Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Semin Cancer Biol ; 80: 157-182, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-32325172

RESUMO

Signal transducer and activator of transcription (STAT) proteins are latent transcription factors that reside in the cytoplasm of several types of cells. In canonical signaling, upon stimulation by cytokines and growth factors, STATs get activated and translocate into the nucleus to transcribe target genes. Among STATs, the STAT3 variant has been studied extensively and implicated in diverse human malignancies. Transcriptionally, STAT3 can upregulate the expression of genes associated with cell proliferation, antiapoptosis, prosurvival, angiogenesis, metastasis, and immune evasion. STAT3 can be constitutively activated in a broad range of human cancers including solid as well as hematological tumors and overexpression of STAT3 has been observed in a wide-range of patient-derived tumor tissue samples that may contribute to dismal prognosis. In contrast, blockade of STAT3 activation using inhibitors or knockdown systems can markedly suppress tumor progression, thus highlighting the significance of abrogating STAT3 signaling cascade in cancer therapy. In this review, we have provided a comprehensive overview of mechanisms of STAT3 signal transduction and its endogenous negative modulators, the role of STAT3 in oncogenesis, the interplay of miRNAs in STAT3 signaling, and mechanisms involved in persistent activation of STAT3. Furthermore, the review also provides a detailed overview of STAT3 signaling inhibition by selected natural compounds, which have displayed potent activity in various preclinical cancer model.


Assuntos
Neoplasias , Transdução de Sinais , Carcinogênese , Proliferação de Células , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neovascularização Patológica , Fator de Transcrição STAT3/genética , Transdução de Sinais/fisiologia
2.
Neurotox Res ; 39(4): 1238-1250, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33914237

RESUMO

Phosphodiesterase-10A (PDE10A) hydrolyse the secondary messengers cGMP and cAMP, two molecules playing important roles in neurodevelopment and brain functions. PDE10A is associated to progression of neurodegenerative diseases like Alzheimer's, Parkinson's, Huntington's diseases, and a critical role in cognitive functions. The present study was undertaken to determine the possible neuroprotective effects and the associated mechanism of papaverine (PAP), a PDE10A isoenzyme inhibitor, against quinolinic acid (QUIN)-induced excitotoxicity using human primary cortical neurons. Cytotoxicity potential of PAP was analysed using MTS assay. Reactive oxygen species (ROS) and mitochondrial membrane potential were measured by DCF-DA and JC10 staining, respectively. Caspase 3/7 and cAMP levels were measured using ELISA kits. Effect of PAP on the CREB, BNDF and synaptic proteins such as SAP-97, synaptophysin, synapsin-I, and PSD-95 expression was analysed by Western blot. Pre-treatment with PAP increased intracellular cAMP and nicotinamide adenine dinucleotide (NAD+) levels, restored mitochondrial membrane potential (ΔΨm), and decreased ROS and caspase 3/7 content in QUIN exposed neurons. PAP up-regulated CREB and BDNF, and synaptic protein expression. In summary, these data indicate that PDE10A is involved in QUIN-mediated synaptotoxicity and its inhibition elicit neuroprotection by reducing the oxidative stress and protecting synaptic proteins via up-regulation of cAMP signalling cascade.


Assuntos
Córtex Cerebral/efeitos dos fármacos , Papaverina/farmacologia , Inibidores de Fosfodiesterase/farmacologia , Diester Fosfórico Hidrolases , Ácido Quinolínico/toxicidade , Sinapses/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Células Cultivadas , Córtex Cerebral/citologia , Córtex Cerebral/enzimologia , Relação Dose-Resposta a Droga , Humanos , Neurônios/efeitos dos fármacos , Neurônios/enzimologia , Diester Fosfórico Hidrolases/metabolismo , Sinapses/enzimologia
3.
Biochimie ; 175: 58-68, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32445654

RESUMO

Hepatocellular carcinoma (HCC) is a major malignancy that stands second in terms of global cancer-related mortality. STAT3 has been described as a latent transcription factor that promotes tumorigenesis. This study was designed to examine the effect of vitexin on STAT3 signaling and important hallmarks of cancer. HCC cells were employed to decipher the impact of vitexin on activation of STAT3 signaling using Western blotting, EMSA, immunocytochemistry, and reporter assay. The combinational apoptotic effects of vitexin with approved anti-cancer drugs was examined by live-dead assay, and its anti-invasive potential was studied using matrigel assay. The results obtained in cell-based assays were verified using in silico analysis. Vitexin effectively inhibited sustained activation of JAK1, JAK2, Src, and STAT3 in HCC cells. Vitexin downregulated DNA binding ability, reduced the nuclear pool of STAT3, and diminished epidermal growth factor (EGF)-driven STAT3 gene expression. Interestingly, treatment with tyrosine phosphatase inhibitor altered the vitexin-induced STAT3 phosphorylation, and the attenuation of STAT3 by vitexin was found to be driven through the upregulation of PTPεC. The combinational studies indicated that vitexin can exhibit substantial apoptotic effects with doxorubicin and sorafenib. It also suppressed the CXCL12-induced cell invasion. The results of cell-based assays are supported by in silico analysis as the vitexin displayed favorable interaction with kinase domain of JAK2 protein. Overall, this study demonstrated that vitexin can act as a potential blocker of the STAT3 signaling cascade and mitigate the survival as well as invasion of HCC cells.


Assuntos
Apigenina/farmacologia , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , Proteínas de Neoplasias/metabolismo , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/efeitos dos fármacos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/patologia , Células Hep G2 , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Invasividade Neoplásica
4.
Curr Org Synth ; 17(3): 243-250, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32096746

RESUMO

Design of chemically novel, biologically potent small heterocyclic molecules with anticancer activities, which targets the enzyme heparanase has gained prominent clinical interest. We have synthesized a novel class of carboxamide derivatives by coupling various substituted aromatic acid hydrazides and triazoleamine with pyrrolidine carboxylic acid by using coupling agents. The synthesized compounds are characterized by spectroscopic techniques such as FT-IR, HRMS and NMR. These compounds are investigated for cytotoxicity on different cancer cell lines and heparanase inhibitory activity. Most of them showed moderate heparanase inhibitory activity and good cytotoxicity.


Assuntos
Antineoplásicos/farmacologia , Inibidores Enzimáticos/farmacologia , Glucuronidase/antagonistas & inibidores , Hidrazinas/farmacologia , Pirrolidinonas/farmacologia , Triazóis/farmacologia , Animais , Antineoplásicos/síntese química , Linhagem Celular Tumoral , Inibidores Enzimáticos/síntese química , Humanos , Hidrazinas/síntese química , Camundongos , Pirrolidinonas/síntese química , Triazóis/síntese química
5.
J Adv Res ; 26: 83-94, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33133685

RESUMO

INTRODUCTION: Epithelial-mesenchymal transition (EMT) is a process of transdifferentiation where epithelial cells attain mesenchymal phenotype to gain invasive properties and thus, can contribute to metastasis of tumor cells. OBJECTIVES: The antimetastatic and antitumor efficacy of brusatol (BT) was investigated in a hepatocellular carcinoma (HCC) model. METHODS: We evaluated the action of BT on EMT process using various biological assays in HCC cell lines and its effect on tumorigenesis in an orthotopic mouse model. RESULTS: We found that BT treatment restored the expression of Occludin, E-cadherin (epithelial markers) while suppressing the levels of different mesenchymal markers in HCC cells and tumor tissues. Moreover, we observed a decline in the expression of transcription factors (Snail, Twist). Since the expression of these two factors can be regulated by STAT3 signaling, we deciphered the influence of BT on modulation of this pathway. BT suppressed the phosphorylation of STAT3Y705 and STAT3 depletion using siRNA resulted in the restoration of epithelial markers. Importantly, BT (1mg/kg) reduced the tumor burden in orthotopic mouse model with a concurrent decline in lung metastasis. CONCLUSIONS: Overall, our results demonstrate that BT interferes with STAT3 induced metastasis by altering the expression of EMT-related proteins in HCC model.

6.
Biomolecules ; 9(12)2019 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-31847229

RESUMO

STAT3 is an oncogenic transcription factor that regulates the expression of genes which are involved in malignant transformation. Aberrant activation of STAT3 has been observed in a wide range of human malignancies and its role in negative prognosis is well-documented. In this report, we performed high-throughput virtual screening in search of STAT3 signaling inhibitors using a cheminformatics platform and identified 2-Amino-6-[2-(Cyclopropylmethoxy)-6-Hydroxyphenyl]-4-Piperidin-4-yl Nicotinonitrile (ACHP) as the inhibitor of the STAT3 signaling pathway. The predicted hit was evaluated in non-small cell lung cancer (NSCLC) cell lines for its STAT3 inhibitory activity. In vitro experiments suggested that ACHP decreased the cell viability and inhibited the phosphorylation of STAT3 on Tyr705 of NSCLC cells. In addition, ACHP imparted inhibitory activity on the constitutive activation of upstream protein tyrosine kinases, including JAK1, JAK2, and Src. ACHP decreased the nuclear translocation of STAT3 and downregulated its DNA binding ability. Apoptosis was evidenced by cleavage of caspase-3 and PARP with the subsequent decline in antiapoptotic proteins, including Bcl-2, Bcl-xl, and survivin. Overall, we report that ACHP can act as a potent STAT3 signaling inhibitor in NSCLC cell lines.


Assuntos
Antineoplásicos/farmacologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Ácidos Nicotínicos/farmacologia , Nitrilas/farmacologia , Fator de Transcrição STAT3/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/farmacologia , Antineoplásicos/química , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Ensaios de Seleção de Medicamentos Antitumorais , Ensaios de Triagem em Larga Escala , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Ácidos Nicotínicos/química , Nitrilas/química , Fator de Transcrição STAT3/metabolismo , Bibliotecas de Moléculas Pequenas/química
7.
Oncotarget ; 8(43): 74188-74208, 2017 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-29088778

RESUMO

HER2+/ER+ breast cancer, a subset of the luminal B subtype, makes up approximately 10% of all breast cancers. The bidirectional crosstalk between HER2 and estrogen receptor (ER) in HER2+/ER+ breast cancer contributes to resistance towards both anti-estrogens and HER2-targeted therapies. TFF3 promotes breast cancer progression and has been implicated in anti-estrogen resistance in breast cancer. Herein, we investigated the cross-regulation between HER2 and estrogen-responsive TFF3, and the role of TFF3 in mediating trastuzumab resistance in HER2+/ER+ breast cancer. TFF3 expression was decreased by HER2 activation, and increased by inhibition of HER2 with trastuzumab in HER2+/ER+ breast cancer cells, partially in an ERα-independent manner. In contrast, the forced expression of TFF3 activated the entire HER family of receptor tyrosine kinases (HER1-4). Hence, HER2 negatively regulates its own signalling through the transcriptional repression of TFF3, while trastuzumab inhibition of HER2 results in increased TFF3 expression to compensate for the loss of HER2 signalling. In HER2+/ER+ breast cancer cells with acquired trastuzumab resistance, TFF3 expression was markedly upregulated and associated with a corresponding decrease in HER signalling. siRNA mediated depletion or small molecule inhibition of TFF3 decreased the survival and growth advantage of the trastuzumab resistant cells without re-sensitization to trastuzumab. Furthermore, TFF3 inhibition abrogated the enhanced cancer stem cell-like behaviour in trastuzumab resistant HER2+/ER+ breast cancer cells. Collectively, TFF3 may function as a potential biomarker and therapeutic target in trastuzumab resistant HER2+/ER+ breast cancer.

8.
Int J Oncol ; 49(3): 1221-9, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27500741

RESUMO

Persistent activation of signal transducer and activator of transcription 3 (STAT3) is associated with the progression of a range of tumors. In this report, we present the anticancer activity of 2-(1-(4-(2-cyanophenyl)1-benzyl­1H-indol-3-yl)-5-(4-methoxy-phenyl)-1-oxa-3-azaspiro(5,5)undecane (CIMO) against breast cancer cells. We observed that CIMO suppresses the proliferation of both estrogen receptor-negative (ER-) (BT-549, MDA-MB­231) and estrogen receptor-positive (ER+) (MCF-7, and BT-474) breast cancer (BC) cells with IC50 of 3.05, 3.41, 4.12 and 4.19 µM, respectively, and without significantly affecting the viability of normal cells. CIMO was observed to mediate its anti-proliferative effect in ER- BC cells by inhibiting the phosphorylation of JAK2 and STAT3 proteins. Quantitative PCR analysis demonstrated that CIMO decreases the relative mRNA expression of genes that are involved in cell cycle progression (CCND1) and cell survival (BCL2, BCL-xL, BAD, CASP 3/7/9, and TP53). In addition, CIMO was observed to arrest BC cells at G0/G1 phase and of the cell cycle. Furthermore, CIMO suppressed BC cell migration and invasion with concordant regulation of genes involved in epithelial to mesechymal transition (CDH1, CDH2, OCLN and VIM). Thus, we report the utility of a synthetic azaspirane which targets the JAK-STAT pathway in ER- BC.


Assuntos
Neoplasias da Mama/metabolismo , Janus Quinase 2/metabolismo , Fator de Transcrição STAT3/metabolismo , Compostos de Espiro/farmacologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ciclina D1/genética , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Células MCF-7 , Fosforilação/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA