Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
NMR Biomed ; 37(1): e5042, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37767769

RESUMO

Magnetic resonance spectroscopic imaging (MRSI) provides information about the spatial distribution of metabolites in the brain. These metabolite maps can be valuable in diagnosing central nervous system pathology. However, MRSI generally suffers from a long acquisition time, poor spatial resolution, and a low metabolite signal-to-noise ratio (SNR). Ultrahigh field strengths (≥ 7 T) can benefit MRSI with an improved SNR and allow high-resolution metabolic mapping. Non-Cartesian spatial-spectral encoding techniques, such as rosette spectroscopic imaging, can efficiently sample spatial and temporal domains, which significantly reduces the imaging time and enables high-resolution metabolic mapping in a clinically relevant scan time. In the current study, high-resolution (in-plane resolution of 2 × 2 mm2 ) mapping of proton (1 H) metabolites in the human brain at 7 T, is demonstrated. Five healthy subjects participated in the study. Using a time-efficient rosette trajectory and short TR/TE free induction decay MRSI, high-resolution maps of 1 H metabolites were obtained in a clinically relevant imaging time (6 min). Suppression of the water signal was achieved with an optimized water suppression enhanced through T1 effects approach and lipid removal was performed using L2 -regularization in the postprocessing. Spatial distributions of N-acetyl-aspartate, total choline, creatine, N-acetyl-aspartyl glutamate, myo-inositol, and glutamate were generated with Cramer-Rao lower bounds of less than 20%.


Assuntos
Encéfalo , Prótons , Humanos , Espectroscopia de Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Imageamento por Ressonância Magnética/métodos , Mapeamento Encefálico/métodos , Água/metabolismo , Glutamatos/metabolismo
2.
J Magn Reson Imaging ; 59(3): 1070-1073, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37246446

RESUMO

BACKGROUND: Nonalcoholic fatty liver disease (NAFLD) is a leading cause of end-stage liver disease. NAFLD diagnosis and follow-up relies on a combination of clinical data, liver imaging, and/or liver biopsy. However, intersite imaging differences impede diagnostic consistency and reduce the repeatability of the multisite clinical trials necessary to develop effective treatments. PURPOSE/HYPOTHESIS: The goal of this pilot study was to harmonize commercially available 3 T magnetic resonance imaging (MRI) measurements of liver fat and stiffness in human participants across academic sites and MRI vendors. STUDY TYPE: Cohort. SUBJECTS: Four community-dwelling adults with obesity. FIELD STRENGTH/SEQUENCE: 1.5 and 3 T, multiecho 3D imaging, PRESS, and GRE. ASSESSMENT: Harmonized proton density fat fraction (PDFF) and magnetic resonance spectroscopy (MRS) protocols were used to quantify the FF of synthetic phantoms and human participants with obesity using standard acquisition parameters at four sites that had four different 3 T MRI instruments. In addition, a harmonized magnetic resonance elastography (MRE) protocol was used to quantify liver stiffness among participants at two different sites at 1.5 and 3 T field strengths. Data were sent to a single data coordinating site for postprocessing. STATISTICAL TESTS: Linear regression in MATLAB, ICC analyses using SAS 9.4, one-sided 95% confidence intervals for the ICC. RESULTS: PDFF and MRS FF measurements were highly repeatable among sites in both humans and phantoms. MRE measurements of liver stiffness in three individuals at two sites using one 1.5 T and one 3 T instrument showed repeatability that was high although lower than that of MRS and PDFF. CONCLUSIONS: We demonstrated harmonization of PDFF, MRS, and MRE-based quantification of liver fat and stiffness through synthetic phantoms, traveling participants, and standardization of postprocessing analysis. Multisite MRI harmonization could contribute to multisite clinical trials assessing the efficacy of interventions and therapy for NAFLD. LEVEL OF EVIDENCE: 2 TECHNICAL EFFICACY STAGE: 2.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Adulto , Humanos , Hepatopatia Gordurosa não Alcoólica/patologia , Projetos Piloto , Reprodutibilidade dos Testes , Fígado/patologia , Imageamento por Ressonância Magnética/métodos , Obesidade/patologia
3.
NMR Biomed ; 36(5): e4872, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36349386

RESUMO

The purpose of the present study was to demonstrate a new sequence and determine the repeatability of simultaneous dynamic measurements of blood flow, venous oxygen saturation (SvO2 ), and relative perfusion (change from resting perfusion) in calf muscle during recovery from plantar flexion exercise. The feasibility of near simultaneous measurement of bio-energetic parameters was also demonstrated. A sequence was developed to simultaneously measure arterial blood flow using flow-encoded projection, SvO2 using susceptibility-based oximetry, and relative perfusion using arterial spin labeling in combination with dynamic plantar flexion exercise. The parameters were determined at rest and during recovery from single leg plantar flexion exercise. Test-retest repeatability was analyzed using Bland-Altman analysis and intraclass correlation coefficients (ICC). The mitochondrial capacity of skeletal muscle was also measured immediately afterwards with dynamic phosphorus magnetic resonance spectroscopy. Eight healthy subjects participated in the study for test-retest repeatability. Popliteal artery blood flow at rest was 1.79 ± 0.58 ml/s and increased to 11.18 ± 3.02 ml/s immediately after exercise. Popliteal vein SvO2 decreased to 45.93% ± 6.5% from a resting value of 70.46% ± 4.76% following exercise. Relative perfusion (change from rest value) was 51.83 ± 15.00 ml/100 g/min at the cessation of exercise. The recovery of blood flow and SvO2 was modeled as a single exponential with time constants of 38.03 ± 6.91 and 71.19 ± 14.53 s, respectively. All the measured parameters exhibited good repeatability with ICC ranging from 0.8 to 0.95. Bioenergetics measurements were within normal range, demonstrating the feasibility of near simultaneous measurement of hemodynamic and energetic parameters. Clinical feasibility was assessed with Barth syndrome patients, demonstrating reduced oxygen extraction from the blood and reduced mitochondrial oxidative capacity compared with healthy controls. The proposed protocol allows rapid imaging of multiple parameters in skeletal muscle that might be affected in disease.


Assuntos
Oximetria , Saturação de Oxigênio , Humanos , Fluxo Sanguíneo Regional/fisiologia , Hemodinâmica , Músculo Esquelético/fisiologia , Perfusão
4.
NMR Biomed ; 36(7): e4908, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36650646

RESUMO

Blood-brain barrier (BBB) dysfunction is associated with a number of central nervous system diseases. This study demonstrates the application of a novel noninvasive technique to measure the BBB permeability in the human brain at 7 T. The technique exploits the fact that, when tissue macromolecules are saturated by off-resonance RF pulse, the intravascular and the extravascular (tissue) water experience different magnetization transfer effects. This principle was combined with arterial spin labeling to distinguish between the intravascular and the tissue water, and was used to calculate perfusion, water extraction fraction (E), and BBB permeability surface area product for water (PS). Simultaneous coregistered magnetization transfer ratio maps were also generated that can provide valuable additional information. Eighteen healthy volunteers (seven females), age = 27 ± 11 years and weight = 65 ± 9 kg, participated in the study. Average perfusion was 67 ± 5 and 29 ± 4 ml/100 g/min (p < 0.05); and E was 0.921 ± 0.025 and 0.962 ± 0.015 (p < 0.05) in the gray matter (GM) and the white matter (WM), respectively. PS was higher in the GM (171 ± 20 ml/100 g/min) compared with the WM (95 ± 18 ml/100 g/min) (p < 0.05). The parameters exhibited good reliability with test re-test experiments. The sensitivity of this technique was demonstrated by 200 mg caffeine intake, which resulted in a decrease in the resting PS by ~31%.


Assuntos
Barreira Hematoencefálica , Imageamento por Ressonância Magnética , Feminino , Humanos , Adolescente , Adulto Jovem , Adulto , Marcadores de Spin , Reprodutibilidade dos Testes , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Encéfalo/irrigação sanguínea , Água , Permeabilidade , Circulação Cerebrovascular/fisiologia
5.
J Nucl Cardiol ; 28(4): 1649-1659, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-31705425

RESUMO

BACKGROUND: Barth syndrome (BTHS) is a rare X-linked condition resulting in cardiomyopathy, however; the effects of BTHS on myocardial substrate metabolism and its relationships with cardiac high-energy phosphate metabolism and left ventricular (LV) function are unknown. We sought to characterize myocardial glucose, fatty acid (FA), and leucine metabolism in BTHS and unaffected controls and examine their relationships with cardiac high-energy phosphate metabolism and LV function. METHODS/RESULTS: Young adults with BTHS (n = 14) and unaffected controls (n = 11, Control, total n = 25) underwent bolus injections of 15O-water and 1-11C-glucose, palmitate, and leucine and concurrent positron emission tomography imaging. LV function and cardiac high-energy phosphate metabolism were examined via echocardiography and 31P magnetic resonance spectroscopy, respectively. Myocardial glucose extraction fraction (21 ± 14% vs 10 ± 8%, P = .03) and glucose utilization (828.0 ± 470.0 vs 393.2 ± 361.0 µmol·g-1·min-1, P = .02) were significantly higher in BTHS vs Control. Myocardial FA extraction fraction (31 ± 7% vs 41 ± 6%, P < .002) and uptake (0.25 ± 0.04 vs 0.29 ± 0.03 mL·g-1·min-1, P < .002) were significantly lower in BTHS vs Control. Altered myocardial metabolism was associated with lower cardiac function in BTHS. CONCLUSIONS: Myocardial substrate metabolism is altered and may contribute to LV dysfunction in BTHS. Clinical Trials #: NCT01625663.


Assuntos
Síndrome de Barth/diagnóstico por imagem , Síndrome de Barth/metabolismo , Ácidos Graxos/metabolismo , Glucose/metabolismo , Miocárdio/metabolismo , Função Ventricular Esquerda/fisiologia , Adulto , Síndrome de Barth/fisiopatologia , Estudos de Casos e Controles , Ecocardiografia , Humanos , Leucina/metabolismo , Espectroscopia de Ressonância Magnética , Masculino , Tomografia por Emissão de Pósitrons , Adulto Jovem
6.
J Enzyme Inhib Med Chem ; 36(1): 1258-1267, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34107824

RESUMO

COVID-19, a pandemic disease caused by a viral infection, is associated with a high mortality rate. Most of the signs and symptoms, e.g. cytokine storm, electrolytes imbalances, thromboembolism, etc., are related to mitochondrial dysfunction. Therefore, targeting mitochondrion will represent a more rational treatment of COVID-19. The current work outlines how COVID-19's signs and symptoms are related to the mitochondrion. Proper understanding of the underlying causes might enhance the opportunity to treat COVID-19.


Assuntos
Tratamento Farmacológico da COVID-19 , COVID-19/patologia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/patologia , Antivirais/química , Antivirais/farmacologia , COVID-19/metabolismo , Humanos , Mitocôndrias/metabolismo , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/patogenicidade
7.
J Inherit Metab Dis ; 42(3): 480-493, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30924938

RESUMO

Barth syndrome (BTHS) is a rare X-linked condition resulting in abnormal mitochondria, cardioskeletal myopathy, and growth delay; however, the effects of BTHS on substrate metabolism regulation and their relationships with tissue function in humans are unknown. We sought to characterize glucose and fat metabolism during rest, submaximal exercise, and postexercise rest in children, adolescents, and young adults with BTHS and unaffected controls and examine their relationships with cardioskeletal energetics and function. Children/adolescents and young adults with BTHS (n = 29) and children/adolescent and young adult control participants (n = 28, total n = 57) underwent an infusion of 6'6'H2 glucose and U-13 C palmitate and indirect calorimetry during rest, 30-minutes of moderate exercise (50% V˙O2peak ), and recovery. Cardiac function, cardioskeletal mitochondrial energetics, and exercise capacity were examined via echocardiography, 31 P magnetic resonance spectroscopy, and peak exercise testing, respectively. The glucose turnover rate was significantly higher in individuals with BTHS during rest (33.2 ± 9.8 vs 27.2 ± 8.1 µmol/kgFFM/min, P < .01) and exercise (34.7 ± 11.2 vs 29.5 ± 8.8 µmol/kgFFM/min, P < .05) and tended to be higher postexercise (33.7 ± 10.2 vs 28.8 ± 8.0 µmol/kgFFM/min, P < .06) compared to controls. Increases in total fat (-3.9 ± 7.5 vs 10.5 ± 8.4 µmol/kgFFM/min, P < .0001) and plasma fatty acid oxidation rates (0.0 ± 1.8 vs 5.1 ± 3.9 µmol/kgFFM/min, P < .0001) from rest to exercise were severely blunted in BTHS compared to controls. Conclusion: An inability to upregulate fat metabolism during moderate intensity exercise appears to be partially compensated by elevations in glucose metabolism. Derangements in fat and glucose metabolism are characteristic of the pathophysiology of BTHS. A severely blunted ability to upregulate fat metabolism during a modest level of physical activity is a defining pathophysiologic characteristic in children, adolescents, and young adults with BTHS.


Assuntos
Síndrome de Barth/metabolismo , Exercício Físico , Ácidos Graxos/sangue , Metabolismo dos Lipídeos , Adolescente , Adulto , Síndrome de Barth/sangue , Glicemia/metabolismo , Calorimetria Indireta , Estudos de Casos e Controles , Criança , Ecocardiografia , Teste de Esforço , Feminino , Humanos , Masculino , Mitocôndrias/metabolismo , Oxirredução , Adulto Jovem
8.
Cancer Cell Int ; 15: 71, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26180516

RESUMO

Cancer chemotherapy resistance (MDR) is the innate and/or acquired ability of cancer cells to evade the effects of chemotherapeutics and is one of the most pressing major dilemmas in cancer therapy. Chemotherapy resistance can arise due to several host or tumor-related factors. However, most current research is focused on tumor-specific factors and specifically genes that handle expression of pumps that efflux accumulated drugs inside malignantly transformed types of cells. In this work, we suggest a wider and alternative perspective that sets the stage for a future platform in modifying drug resistance with respect to the treatment of cancer.

9.
Magn Reson Med ; 71(1): 318-25, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23424006

RESUMO

PURPOSE: The objective of this study was to develop a new noncontrast method to directly quantify regional skeletal muscle oxygenation. METHODS: The feasibility of the method was examined in five healthy volunteers using a 3 T clinical MRI scanner, at rest and during a sustained isometric contraction. The perfusion of skeletal muscle of the calf was measured using an arterial spin labeling method, whereas the oxygen extraction fraction of the muscle was measured using a susceptibility-based MRI technique. RESULTS: In all volunteers, the perfusion in soleus muscle increased significantly from 6.5 ± 2.0 mL (100 g min)(-1) at rest to 47.9 ± 7.7 mL (100 g min)(-1) during exercise (P < 0.05). Although the corresponding oxygen extraction fraction did not change significantly, the rate of oxygen consumption increased from 0.43 ± 0.13 to 4.2 ± 1.5 mL (100 g min)(-1) (P < 0.05). Similar results were observed in gastrocnemius muscle but with greater oxygen extraction fraction increase than the soleus muscle. CONCLUSION: This is the first MR oximetry developed for quantification of regional skeletal muscle oxygenation. A broad range of medical conditions could benefit from these techniques, including cardiology, gerontology, kinesiology, and physical therapy.


Assuntos
Contração Isométrica/fisiologia , Imageamento por Ressonância Magnética/métodos , Músculo Esquelético/metabolismo , Oximetria/métodos , Consumo de Oxigênio/fisiologia , Oxigênio/metabolismo , Adulto , Meios de Contraste , Estudos de Viabilidade , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Músculo Esquelético/anatomia & histologia , Valores de Referência
10.
NMR Biomed ; 27(6): 663-71, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24706347

RESUMO

Creatine kinase (CK) is essential for the buffering and rapid regeneration of adenosine triphosphate (ATP) in heart tissue. Herein, we demonstrate a (31) P MRS protocol to quantify CK reaction kinetics in human myocardium at 3 T. Furthermore, we sought to quantify the test-retest reliability of the measured metabolic parameters. The method localizes the (31) P signal from the heart using modified one-dimensional image-selected in vivo spectroscopy (ISIS), and a time-dependent saturation transfer (TDST) approach was used to measure CK reaction parameters. Fifteen healthy volunteers (22 measurements in total) were tested. The CK reaction rate constant (kf ) was 0.32 ± 0.05 s(-1) and the coefficient of variation (CV) was 15.62%. The intrinsic T1 for phosphocreatine (PCr) was 7.36 ± 1.79 s with CV = 24.32%. These values are consistent with those reported previously. The PCr/ATP ratio was equal to 1.94 ± 0.15 with CV = 7.73%, which is within the range of healthy subjects. The reproducibility of the technique was tested in seven subjects and inferred parameters, such as kf and T1 , exhibited good reliability [intraclass correlation coefficient (ICC) of 0.90 and 0.79 for kf and T1 , respectively). The reproducibility data provided in this study will enable the calculation of the power and sample sizes required for clinical and research studies. The technique will allow for the examination of cardiac energy metabolism in clinical and research studies, providing insight into the relationship between energy deficit and functional deficiency in the heart.


Assuntos
Creatina Quinase/metabolismo , Espectroscopia de Ressonância Magnética/métodos , Miocárdio/enzimologia , Isótopos de Fósforo , Adulto , Feminino , Humanos , Cinética , Masculino , Pessoa de Meia-Idade , Método de Monte Carlo , Reprodutibilidade dos Testes
11.
Sci Rep ; 14(1): 11912, 2024 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-38789439

RESUMO

The objective of this study is to determine characteristics of patients with myofascial pain syndrome (MPS) of the low back and the degree to which the low back pain in the patients examined can be attributed to MPS. Twenty-five subjects with myofascial trigger point(s) [MTrP(s)] on the low back participated in this cross-sectional study. The location, number, and type of selected MTrPs were identified by palpation and verified by ultrasound. Pain pressure threshold, physical function, and other self-reported outcomes were measured. Significant differences were found in Group 1 (Active), 2 (Latent), 3 (Atypical, no twitching but with spontaneous pain), and 4 (Atypical, no twitching and no spontaneous pain) of participants in the number of MTrPs, current pain, and worst pain in the past 24 h (p = .001-.01). There were interaction effects between spontaneous pain and twitching response on reports of physical function, current pain, and worst pain (p = .002-.04). Participants in Group 3 reported lower levels of physical function, and higher levels of current pain and worst pain compared to those in Group 4. Participants in Group 1 and 2 had similar levels of physical function, current pain, and worst pain. The number of MTrPs is most closely associated with the level of pain. Spontaneous pain report seems to be a decisive factor associated with poor physical function; however, twitching response is not.


Assuntos
Dor Lombar , Síndromes da Dor Miofascial , Humanos , Feminino , Masculino , Síndromes da Dor Miofascial/fisiopatologia , Adulto , Estudos Transversais , Dor Lombar/fisiopatologia , Pessoa de Meia-Idade , Pontos-Gatilho/fisiopatologia , Medição da Dor , Limiar da Dor , Ultrassonografia
12.
Sci Rep ; 13(1): 8777, 2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-37258697

RESUMO

MRI is a valuable diagnostic tool to investigate spinal cord (SC) pathology. SC MRI can benefit from the increased signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) at ultra-high fields such as 7 T. However, SC MRI acquisitions with routine Cartesian readouts are prone to image artifacts caused by physiological motion. MRI acquisition techniques with non-Cartesian readouts such as rosette can help reduce motion artifacts. The purpose of this study was to demonstrate the feasibility of high-resolution SC imaging using rosette trajectory with magnetization transfer preparation (MT-prep) and compressed sensing (CS) at 7 T. Five healthy volunteers participated in the study. Images acquired with rosette readouts demonstrated reduced motion artifacts compared to the standard Cartesian readouts. The combination of multi-echo rosette-readout images improved the CNR by approximately 50% between the gray matter (GM) and white matter (WM) compared to single-echo images. MT-prep images showed excellent contrast between the GM and WM with magnetization transfer ratio (MTR) and cerebrospinal fluid normalized MT signal (MTCSF) = 0.12 ± 0.017 and 0.74 ± 0.013, respectively, for the GM; and 0.18 ± 0.011 and 0.58 ± 0.009, respectively, for the WM. Under-sampled acquisition using rosette readout with CS reconstruction demonstrated up to 6 times faster scans with comparable image quality as the fully-sampled acquisition.


Assuntos
Processamento de Imagem Assistida por Computador , Medula Espinal , Humanos , Processamento de Imagem Assistida por Computador/métodos , Estudos de Viabilidade , Medula Espinal/diagnóstico por imagem , Substância Cinzenta/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos
13.
Front Vet Sci ; 10: 1072680, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36756310

RESUMO

Introduction: Feline obesity is common, afflicting ~25-40% of domestic cats. Obese cats are predisposed to many metabolic dyscrasias, such as insulin resistance, altered blood lipids, and feline hepatic lipidosis. Fibroblast Growth Factor-21 (FGF21) is an endocrine hormone that mediates the fat-liver axis, and in humans and animals, FGF21 can ameliorate insulin resistance, non-alcoholic fatty liver disease, and obesity. Activation of the FGF21 pathway may have therapeutic benefits for obese cats. Methods: In this preliminary cross-sectional study, ad libitum fed, purpose-bred, male-neutered, 6-year-old, obese and overweight cats were administered either 10 mg/kg/day of an FGF21 mimetic (FGF21; n = 4) or saline (control; n = 3) for 14 days. Body weight, food, and water intake were quantified daily during and 2 weeks following treatment. Changes in metabolic and liver parameters, intrahepatic triglyceride content, liver elasticity, and gut microbiota were evaluated. Results: Treatment with FGF21 resulted in significant weight loss (~5.93%) compared to control and a trend toward decreased intrahepatic triglyceride content. Cats treated with FGF21 had decreased serum alkaline phosphatase. No significant changes were noted in liver elasticity, serum, liver, or metabolic parameters, or gut microbiome composition. Discussion: In obese and overweight cats, activation of the FGF21 pathway can safely induce weight loss with trends to improve liver lipid content. This exploratory study is the first to evaluate the FGF21 pathway in cats. Manipulation of the FGF21 pathway has promising potential as a therapeutic for feline obesity. Further studies are needed to see if FGF21-pathway manipulation can be therapeutic for feline hepatic lipidosis.

14.
bioRxiv ; 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37461495

RESUMO

Purpose: We examined how set-volume equated resistance training using either the back squat (SQ) or hip thrust (HT) affected hypertrophy and various strength outcomes. Methods: Untrained college-aged participants were randomized into HT or SQ groups. Surface electromyograms (sEMG) from the right gluteus maximus and medius muscles were obtained during the first training session. Participants completed nine weeks of supervised training (15-17 sessions), before and after which we assessed muscle cross-sectional area (mCSA) via magnetic resonance imaging and strength via three-repetition maximum (3RM) testing and an isometric wall push test. Results: Glutei mCSA growth was similar across both groups. Estimates [(-) favors HT; (+) favors SQ] modestly favored the HT compared to SQ for lower [effect ± SE, -1.6 ± 2.1 cm2], mid [-0.5± 1.7 cm2], and upper [-0.5 ± 2.6 cm2], but with appreciable variance. Gluteus medius+minimus [-1.8 ± 1.5 cm2] and hamstrings [0.1 ± 0.6 cm2] mCSA demonstrated little to no growth with small differences between groups. Thigh mCSA changes were greater in SQ for the quadriceps [3.6 ± 1.5 cm2] and adductors [2.5 ± 0.7 cm2]. Squat 3RM increases favored SQ [14 ± 2.5 kg] and hip thrust 3RM favored HT [-26 ± 5 kg]. 3RM deadlift [0 ± 2 kg] and wall push strength [-7 ± 13 N] similarly improved. All measured gluteal sites showed greater mean sEMG amplitudes during the first bout hip thrust versus squat set, but this did not consistently predict gluteal hypertrophy outcomes. Conclusion: Nine weeks of squat versus hip thrust training elicited similar gluteal hypertrophy, greater thigh hypertrophy in SQ, strength increases that favored exercise allocation, and similar strength transfers to the deadlift and wall push.

15.
Front Physiol ; 14: 1279170, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37877099

RESUMO

We examined how set-volume equated resistance training using either the back squat (SQ) or hip thrust (HT) affected hypertrophy and various strength outcomes. Untrained college-aged participants were randomized into HT (n = 18) or SQ (n = 16) groups. Surface electromyograms (sEMG) from the right gluteus maximus and medius muscles were obtained during the first training session. Participants completed 9 weeks of supervised training (15-17 sessions), before and after which gluteus and leg muscle cross-sectional area (mCSA) was assessed via magnetic resonance imaging. Strength was also assessed prior to and after the training intervention via three-repetition maximum (3RM) testing and an isometric wall push test. Gluteus mCSA increases were similar across both groups. Specifically, estimates [(-) favors HT (+) favors SQ] modestly favored the HT versus SQ for lower [effect ±SE, -1.6 ± 2.1 cm2; CI95% (-6.1, 2.0)], mid [-0.5 ± 1.7 cm2; CI95% (-4.0, 2.6)], and upper [-0.5 ± 2.6 cm2; CI95% (-5.8, 4.1)] gluteal mCSAs but with appreciable variance. Gluteus medius + minimus [-1.8 ± 1.5 cm2; CI95% (-4.6, 1.4)] and hamstrings [0.1 ± 0.6 cm2; CI95% (-0.9, 1.4)] mCSA demonstrated little to no growth with small differences between groups. mCSA changes were greater in SQ for the quadriceps [3.6 ± 1.5 cm2; CI95% (0.7, 6.4)] and adductors [2.5 ± 0.7 cm2; CI95% (1.2, 3.9)]. Squat 3RM increases favored SQ [14 ± 2 kg; CI95% (9, 18),] and hip thrust 3RM favored HT [-26 ± 5 kg; CI95% (-34, -16)]. 3RM deadlift [0 ± 2 kg; CI95% (-4, 3)] and wall push strength [-7 ± 12N; CI95% (-32, 17)] similarly improved. All measured gluteal sites showed greater mean sEMG amplitudes during the first bout hip thrust versus squat set, but this did not consistently predict gluteal hypertrophy outcomes. Squat and hip thrust training elicited similar gluteal hypertrophy, greater thigh hypertrophy in SQ, strength increases that favored exercise allocation, and similar deadlift and wall push strength increases.

16.
NPJ Parkinsons Dis ; 8(1): 28, 2022 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-35304493

RESUMO

Identification of individuals at high risk for rapid progression of motor and cognitive signs in Parkinson disease (PD) is clinically significant. Postural instability and gait dysfunction (PIGD) are associated with greater motor and cognitive deterioration. We examined the relationship between baseline clinical factors and the development of postural instability using 5-year longitudinal de-novo idiopathic data (n = 301) from the Parkinson's Progressive Markers Initiative (PPMI). Logistic regression analysis revealed baseline features associated with future postural instability, and we designated this cohort the emerging postural instability (ePI) phenotype. We evaluated the resulting ePI phenotype rating scale validity in two held-out populations which showed a significantly higher risk of postural instability. Emerging PI phenotype was identified before onset of postural instability in 289 of 301 paired comparisons, with a median progression time of 972 days. Baseline cognitive performance was similar but declined more rapidly in ePI phenotype. We provide an ePI phenotype rating scale (ePIRS) for evaluation of individual risk at baseline for progression to postural instability.

17.
J Xenobiot ; 12(3): 158-180, 2022 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-35893264

RESUMO

Replication is a fundamental aspect of cancer, and replication is about reproducing all the elements and structures that form a cell. Among them are DNA, RNA, enzymes, and coenzymes. All the DNA is doubled during each S (synthesis) cell cycle phase. This means that six billion nucleic acids must be synthesized in each cycle. Tumor growth, proliferation, and mutations all depend on this synthesis. Cancer cells require a constant supply of nucleotides and other macromolecules. For this reason, they must stimulate de novo nucleotide synthesis to support nucleic acid provision. When deregulated, de novo nucleic acid synthesis is controlled by oncogenes and tumor suppressor genes that enable increased synthesis and cell proliferation. Furthermore, cell duplication must be achieved swiftly (in a few hours) and in the midst of a nutrient-depleted and hypoxic environment. This also means that the enzymes participating in nucleic acid synthesis must work efficiently. pH is a critical factor in enzymatic efficiency and speed. This review will show that the enzymatic machinery working in nucleic acid synthesis requires a pH on the alkaline side in most cases. This coincides with many other pro-tumoral factors, such as the glycolytic phenotype, benefiting from an increased intracellular pH. An increased intracellular pH is a perfect milieu for high de novo nucleic acid production through optimal enzymatic performance.

18.
Front Physiol ; 13: 857555, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35360253

RESUMO

We evaluated the effects of higher-load (HL) versus (lower-load) higher-volume (HV) resistance training on skeletal muscle hypertrophy, strength, and muscle-level molecular adaptations. Trained men (n = 15, age: 23 ± 3 years; training experience: 7 ± 3 years) performed unilateral lower-body training for 6 weeks (3× weekly), where single legs were randomly assigned to HV and HL paradigms. Vastus lateralis (VL) biopsies were obtained prior to study initiation (PRE) as well as 3 days (POST) and 10 days following the last training bout (POSTPR). Body composition and strength tests were performed at each testing session, and biochemical assays were performed on muscle tissue after study completion. Two-way within-subject repeated measures ANOVAs were performed on most dependent variables, and tracer data were compared using dependent samples t-tests. A significant interaction existed for VL muscle cross-sectional area (assessed via magnetic resonance imaging; interaction p = 0.046), where HV increased this metric from PRE to POST (+3.2%, p = 0.018) whereas HL training did not (-0.1%, p = 0.475). Additionally, HL increased leg extensor strength more so than HV training (interaction p = 0.032; HV < HL at POST and POSTPR, p < 0.025 for each). Six-week integrated non-myofibrillar protein synthesis (iNon-MyoPS) rates were also higher in the HV versus HL condition, while no difference between conditions existed for iMyoPS rates. No interactions existed for other strength, VL morphology variables, or the relative abundances of major muscle proteins. Compared to HL training, 6 weeks of HV training in previously trained men optimizes VL hypertrophy in lieu of enhanced iNon-MyoPS rates, and this warrants future research.

19.
Magn Reson Med ; 65(5): 1234-8, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21500254

RESUMO

Accumulation of triglycerides (TG) in heart tissue has been associated with changes in left ventricular function. Proton magnetic resonance spectroscopy is currently the only noninvasive in vivo method to measure myocardial triglycerides content. The primary aim of this study was to determine if these in vivo measurements are specific to myocardial triglycerides in human subjects. Thus, in vivo proton magnetic resonance spectroscopy measurements were conducted on orthotopic heart transplant patients (n = 8) immediately before they underwent routine biopsies and ex vivo measurements were made on the endomyocardial biopsy samples. The correlation coefficient between the two measurements was 0.97, with P < 0.005, demonstrating for the first time the specificity of the in vivo measurement in human heart. From accompanying reliability experiments, the standardized typical error for the in vivo proton magnetic resonance spectroscopy method was estimated to be 7.0%, with a 95% confidence interval from 5.5 to 9.4%. These results suggest that proton magnetic resonance spectroscopy provides a specific and reliable measurement of myocardial triglycerides content and is suitable for routine studies.


Assuntos
Espectroscopia de Ressonância Magnética/métodos , Miocárdio/química , Triglicerídeos/análise , Algoritmos , Biópsia , Estudos de Casos e Controles , Transplante de Coração , Humanos , Modelos Lineares , Reprodutibilidade dos Testes
20.
J Xenobiot ; 11(2): 77-93, 2021 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-34063739

RESUMO

COVID-19, occurring due to SARS-COV-2 infection, is the most recent pandemic disease that has led to three million deaths at the time of writing. A great deal of effort has been directed towards altering the virus trajectory and/or managing the interactions of the virus with its subsequent targets in the human body; these interactions can lead to a chain reaction-like state manifested by a cytokine storm and progress to multiple organ failure. During cytokine storms the ratio of pro-inflammatory to anti-inflammatory mediators is generally increased, which contributes to the instigation of hyper-inflammation and confers advantages to the virus. Because cytokine expression patterns fluctuate from one person to another and even within the same person from one time to another, we suggest a road map of COVID-19 management using an individual approach instead of focusing on the blockbuster process (one treatment for most people, if not all). Here, we highlight the biology of the virus, study the interaction between the virus and humans, and present potential pharmacological and non-pharmacological modulators that might contribute to the global war against SARS-COV-2. We suggest an algorithmic roadmap to manage COVID-19.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA