Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Proc Natl Acad Sci U S A ; 117(33): 19904-19913, 2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32747565

RESUMO

Asgard archaea genomes contain potential eukaryotic-like genes that provide intriguing insight for the evolution of eukaryotes. The eukaryotic actin polymerization/depolymerization cycle is critical for providing force and structure in many processes, including membrane remodeling. In general, Asgard genomes encode two classes of actin-regulating proteins from sequence analysis, profilins and gelsolins. Asgard profilins were demonstrated to regulate actin filament nucleation. Here, we identify actin filament severing, capping, annealing and bundling, and monomer sequestration activities by gelsolin proteins from Thorarchaeota (Thor), which complete a eukaryotic-like actin depolymerization cycle, and indicate complex actin cytoskeleton regulation in Asgard organisms. Thor gelsolins have homologs in other Asgard archaea and comprise one or two copies of the prototypical gelsolin domain. This appears to be a record of an initial preeukaryotic gene duplication event, since eukaryotic gelsolins are generally comprise three to six domains. X-ray structures of these proteins in complex with mammalian actin revealed similar interactions to the first domain of human gelsolin or cofilin with actin. Asgard two-domain, but not one-domain, gelsolins contain calcium-binding sites, which is manifested in calcium-controlled activities. Expression of two-domain gelsolins in mammalian cells enhanced actin filament disassembly on ionomycin-triggered calcium release. This functional demonstration, at the cellular level, provides evidence for a calcium-controlled Asgard actin cytoskeleton, indicating that the calcium-regulated actin cytoskeleton predates eukaryotes. In eukaryotes, dynamic bundled actin filaments are responsible for shaping filopodia and microvilli. By correlation, we hypothesize that the formation of the protrusions observed from Lokiarchaeota cell bodies may involve the gelsolin-regulated actin structures.


Assuntos
Fatores de Despolimerização de Actina/metabolismo , Actinas/metabolismo , Archaea/metabolismo , Proteínas Arqueais/metabolismo , Gelsolina/metabolismo , Fatores de Despolimerização de Actina/química , Fatores de Despolimerização de Actina/genética , Actinas/química , Actinas/genética , Sequência de Aminoácidos , Archaea/química , Archaea/genética , Proteínas Arqueais/química , Proteínas Arqueais/genética , Citoesqueleto/química , Citoesqueleto/genética , Citoesqueleto/metabolismo , Evolução Molecular , Gelsolina/química , Gelsolina/genética , Genoma Arqueal , Polimerização , Conformação Proteica em alfa-Hélice , Alinhamento de Sequência
2.
Mol Cell ; 38(2): 236-49, 2010 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-20417602

RESUMO

Loss of fragile X mental retardation protein FMR1 is the most common genetic cause of mental deficiency in man. We find that both FMR1 and the related FXR1 serve as direct binding partners for the Cdc42 effector PAK1. This involves an 11 residue segment in the PAK1 autoinhibitory domain that is exposed upon kinase activation and binds the FXR1 KH2 domain. Active PAK1 can phosphorylate FXR1 at Ser420; antibodies to this site show increased phosphorylation when fragile X proteins are recruited to stress granules. During zebrafish muscle development, FXR1 Ser420 phosphorylation is needed for protein function. The familial FMR1(I304N) mutation is biologically inactive, and FXR1(I304N) fails to bind PAK1. A different PAK1 binding-deficient mutant, FXR1(Q348K/E352A), fails to rescue loss of Zf-FXR1 unless combined with a gain-of-function S420D phosphomimetic. This is the first documented protein partner for the KH(2) domain of FMR1 or FXR1, and it has several implications for signaling by fragile X proteins.


Assuntos
Proteína do X Frágil da Deficiência Intelectual/metabolismo , Quinases Ativadas por p21/metabolismo , Sequência de Aminoácidos , Proteína do X Frágil da Deficiência Intelectual/genética , Glutationa Transferase/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas Grupo K/química , Humanos , Masculino , Dados de Sequência Molecular , Proteínas Recombinantes de Fusão/metabolismo , Homologia de Sequência de Aminoácidos , Quinases Ativadas por p21/genética
3.
EMBO Rep ; 13(7): 653-9, 2012 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-22653441

RESUMO

p21-activated kinases (PAKs) are Cdc42 effectors found in metazoans, fungi and protozoa. They are subdivided into PAK1-like (group I) or PAK4-like (group II) kinases. Human PAK4 is widely expressed and its regulatory mechanism is unknown. We show that PAK4 is strongly inhibited by a newly identified auto-inhibitory domain (AID) formed by amino acids 20 to 68, which is evolutionarily related to that of other PAKs. In contrast to group I kinases, PAK4 is constitutively phosphorylated on Ser 474 in the activation loop, but held in an inactive state until Cdc42 binding. Thus, group II PAKs are regulated through conformational changes in the AID rather than A-loop phosphorylation.


Assuntos
Proteína cdc42 de Ligação ao GTP/metabolismo , Quinases Ativadas por p21/química , Quinases Ativadas por p21/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação , Células COS , Chlorocebus aethiops , Ativação Enzimática , Dados de Sequência Molecular , Mutação , Fosforilação , Serina/metabolismo , Quinases Ativadas por p21/genética
4.
Biochem Biophys Res Commun ; 438(1): 169-74, 2013 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-23876315

RESUMO

Six human PAK members are classified into groups I (PAKs 1-3) and II (PAK4-6). Previously, only group I PAKs were thought to be auto-inhibited but very recently PAK4, the prototype of group II PAKs, has also been shown to be auto-inhibited by its N-terminal regulatory domain. However, the complete auto-inhibitory domain (AID) sequence remains undefined and the mechanism underlying its auto-inhibition is largely elusive. Here, the N-terminal regulatory domain of PAK4 sufficient for auto-inhibiting and binding Cdc42/Rac was characterized to be intrinsically unstructured, but nevertheless we identified the entire AID sequence by NMR. Strikingly, an AID peptide was derived by deleting the binding-unnecessary residues, which has a Kd of 320 nM to the PAK4 catalytic domain. Consequently, the PAK4 crystal structure complexed with the entire AID has been determined, which reveals that the complete kinase cleft is occupied by 20 AID residuescomposed of an N-terminal α-helix and a previously-identified pseudosubstrate motif, thus achieving auto-inhibition. Our study reveals that PAK4 is auto-inhibited by a novel mechanism which is completely different from that for PAK1, thus bearing critical implications for design of inhibitors specific for group II PAKs.


Assuntos
Inibidores de Proteínas Quinases/química , Quinases Ativadas por p21/química , Quinases Ativadas por p21/ultraestrutura , Sequência de Aminoácidos , Sítios de Ligação , Cristalografia/métodos , Inibidores Enzimáticos , Espectroscopia de Ressonância Magnética/métodos , Dados de Sequência Molecular , Ligação Proteica , Conformação Proteica
5.
Commun Biol ; 5(1): 890, 2022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-36045281

RESUMO

Charting the emergence of eukaryotic traits is important for understanding the characteristics of organisms that contributed to eukaryogenesis. Asgard archaea and eukaryotes are the only organisms known to possess regulated actin cytoskeletons. Here, we determined that gelsolins (2DGels) from Lokiarchaeota (Loki) and Heimdallarchaeota (Heim) are capable of regulating eukaryotic actin dynamics in vitro and when expressed in eukaryotic cells. The actin filament severing and capping, and actin monomer sequestering, functionalities of 2DGels are strictly calcium controlled. We determined the X-ray structures of Heim and Loki 2DGels bound actin monomers. Each structure possesses common and distinct calcium-binding sites. Loki2DGel has an unusual WH2-like motif (LVDV) between its two gelsolin domains, in which the aspartic acid coordinates a calcium ion at the interface with actin. We conclude that the calcium-regulated actin cytoskeleton predates eukaryogenesis and emerged in the predecessors of the last common ancestor of Loki, Heim and Thorarchaeota.


Assuntos
Actinas , Cálcio , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Archaea/metabolismo , Cálcio/metabolismo , Gelsolina/química , Gelsolina/metabolismo
6.
Nat Commun ; 12(1): 5315, 2021 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-34493720

RESUMO

Human PAK4 is an ubiquitously expressed p21-activated kinase which acts downstream of Cdc42. Since PAK4 is enriched in cell-cell junctions, we probed the local protein environment around the kinase with a view to understanding its location and substrates. We report that U2OS cells expressing PAK4-BirA-GFP identify a subset of 27 PAK4-proximal proteins that are primarily cell-cell junction components. Afadin/AF6 showed the highest relative biotin labelling and links to the nectin family of homophilic junctional proteins. Reciprocally >50% of the PAK4-proximal proteins were identified by Afadin BioID. Co-precipitation experiments failed to identify junctional proteins, emphasizing the advantage of the BioID method. Mechanistically PAK4 depended on Afadin for its junctional localization, which is similar to the situation in Drosophila. A highly ranked PAK4-proximal protein LZTS2 was immuno-localized with Afadin at cell-cell junctions. Though PAK4 and Cdc42 are junctional, BioID analysis did not yield conventional cadherins, indicating their spatial segregation. To identify cellular PAK4 substrates we then assessed rapid changes (12') in phospho-proteome after treatment with two PAK inhibitors. Among the PAK4-proximal junctional proteins seventeen PAK4 sites were identified. We anticipate mammalian group II PAKs are selective for the Afadin/nectin sub-compartment, with a demonstrably distinct localization from tight and cadherin junctions.


Assuntos
Junções Intercelulares/metabolismo , Proteínas dos Microfilamentos/genética , Nectinas/genética , Proteômica/métodos , Proteína cdc42 de Ligação ao GTP/genética , Quinases Ativadas por p21/genética , Biotina/química , Carbono-Nitrogênio Ligases/genética , Carbono-Nitrogênio Ligases/metabolismo , Linhagem Celular Tumoral , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Junções Intercelulares/genética , Junções Intercelulares/ultraestrutura , Marcação por Isótopo , Espectrometria de Massas , Proteínas dos Microfilamentos/metabolismo , Nectinas/metabolismo , Osteoblastos/metabolismo , Osteoblastos/ultraestrutura , Ligação Proteica , Mapeamento de Interação de Proteínas , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Transdução de Sinais , Proteína cdc42 de Ligação ao GTP/metabolismo , Quinases Ativadas por p21/metabolismo
7.
PLoS One ; 10(6): e0129634, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26068882

RESUMO

The serine/threonine kinase PAK4 is a Cdc42 effector whose role is not well understood; overexpression of PAK4 has been associated with some cancers, and there are reports that correlate kinase level with increased cell migration in vitro. Here we report that PAK4 is primarily associated with cell-cell junctions in all the cell lines we tested, and fails to accumulate at focal adhesions or at the leading edge of migrating cells. In U2OS osteosarcoma and MCF-7 breast cancer cell lines, PAK4 depletion did not affect collective cell migration, but affected cell polarization. By contrast, Cdc42 depletion (as reported by many studies) caused a strong defect in junctional assembly in multiple cells lines. We also report that the depletion of PAK4 protein or treatment of cells with the PAK4 inhibitor PF-3758309 can lead to defects in centrosome reorientation (polarization) after cell monolayer wounding. These experiments are consistent with PAK4 forming part of a conserved cell-cell junctional polarity Cdc42 complex. We also confirm ß-catenin as a target for PAK4 in these cells. Treatment of cells with PF-3758309 caused inhibition of ß-catenin Ser-675 phosphorylation, which is located predominantly at cell-cell junctions.


Assuntos
Polaridade Celular , Junções Intercelulares/metabolismo , Proteína cdc42 de Ligação ao GTP/metabolismo , Quinases Ativadas por p21/metabolismo , Linhagem Celular Tumoral/efeitos dos fármacos , Polaridade Celular/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Humanos , Junções Intercelulares/efeitos dos fármacos , Células MCF-7/efeitos dos fármacos , Fosforilação , Inibidores de Proteínas Quinases/farmacologia , Pirazóis/farmacologia , Pirróis/farmacologia , Serina/metabolismo , beta Catenina/metabolismo , Proteína cdc42 de Ligação ao GTP/genética , Quinases Ativadas por p21/antagonistas & inibidores , Quinases Ativadas por p21/genética
8.
Nat Commun ; 6: 8681, 2015 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-26607847

RESUMO

PAK4 is a metazoan-specific kinase acting downstream of Cdc42. Here we describe the structure of human PAK4 in complex with Inka1, a potent endogenous kinase inhibitor. Using single mammalian cells containing crystals 50 µm in length, we have determined the in cellulo crystal structure at 2.95 Å resolution, which reveals the details of how the PAK4 catalytic domain binds cellular ATP and the Inka1 inhibitor. The crystal lattice consists only of PAK4-PAK4 contacts, which form a hexagonal array with channels of 80 Å in diameter that run the length of the crystal. The crystal accommodates a variety of other proteins when fused to the kinase inhibitor. Inka1-GFP was used to monitor the process crystal formation in living cells. Similar derivatives of Inka1 will allow us to study the effects of PAK4 inhibition in cells and model organisms, to allow better validation of therapeutic agents targeting PAK4.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Quinases Ativadas por p21/metabolismo , Trifosfato de Adenosina , Animais , Células COS , Domínio Catalítico , Linhagem Celular Tumoral , Chlorocebus aethiops , Cristalização , Cristalografia por Raios X , Escherichia coli , Células HEK293 , Células HeLa , Humanos , Imunoprecipitação , Técnicas In Vitro , Peptídeos e Proteínas de Sinalização Intracelular/química , Microscopia Confocal , Ligação Proteica , Estrutura Terciária de Proteína , Quinases Ativadas por p21/química
9.
Structure ; 18(7): 879-90, 2010 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-20637424

RESUMO

Crystal structures of inactive PAK1(K299R) and the activation (A)-loop phospho-mimetic PAK1(T423E) have suggested that the kinase domain is in an active state regardless of activation loop status. Contrary to a large body of literature, we find that neither is PAK1(T423E) active in cells, nor does it exhibit significant activity in vitro. To explain these discrepancies all-atom molecular dynamics (MD) simulations of PAK1(phospho-T423) in complex with ATP and substrate were performed. These simulations point to a key interaction between PAK1 Lys308, at the end of the alphaC helix, and the pThr423 phosphate group, not seen in X-ray structures. The orthologous PAK4 Arg359 fulfills the same role in immobilizing the alphaC helix. These in silico predictions were validated by experimental mutagenesis of PAK1 and PAK4. The simulations explain why the PAK1 A-loop phospho-mimetic is inactive, but also point to a key functional interaction likely found in other protein kinases.


Assuntos
Simulação de Dinâmica Molecular , Fosfatos/metabolismo , Quinases Ativadas por p21/química , Domínio Catalítico/genética , Mutagênese , Mutação de Sentido Incorreto/genética , Fosforilação , Ligação Proteica , Quinases Ativadas por p21/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA