Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Cell ; 144(3): 402-13, 2011 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-21295700

RESUMO

The functions of caveolae, the characteristic plasma membrane invaginations, remain debated. Their abundance in cells experiencing mechanical stress led us to investigate their role in membrane-mediated mechanical response. Acute mechanical stress induced by osmotic swelling or by uniaxial stretching results in a rapid disappearance of caveolae, in a reduced caveolin/Cavin1 interaction, and in an increase of free caveolins at the plasma membrane. Tether-pulling force measurements in cells and in plasma membrane spheres demonstrate that caveola flattening and disassembly is the primary actin- and ATP-independent cell response that buffers membrane tension surges during mechanical stress. Conversely, stress release leads to complete caveola reassembly in an actin- and ATP-dependent process. The absence of a functional caveola reservoir in myotubes from muscular dystrophic patients enhanced membrane fragility under mechanical stress. Our findings support a new role for caveolae as a physiological membrane reservoir that quickly accommodates sudden and acute mechanical stresses.


Assuntos
Cavéolas/fisiologia , Células Endoteliais/citologia , Células Musculares/fisiologia , Actinas/fisiologia , Trifosfato de Adenosina/fisiologia , Animais , Cavéolas/ultraestrutura , Linhagem Celular , Células Endoteliais/fisiologia , Humanos , Camundongos , Células Musculares/citologia , Estresse Mecânico
2.
Proc Natl Acad Sci U S A ; 117(48): 30476-30487, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33214152

RESUMO

None of the current superresolution microscopy techniques can reliably image the changes in endogenous protein nanoclustering dynamics associated with specific conformations in live cells. Single-domain nanobodies have been invaluable tools to isolate defined conformational states of proteins, and we reasoned that expressing these nanobodies coupled to single-molecule imaging-amenable tags could allow superresolution analysis of endogenous proteins in discrete conformational states. Here, we used anti-GFP nanobodies tagged with photoconvertible mEos expressed as intrabodies, as a proof-of-concept to perform single-particle tracking on a range of GFP proteins expressed in live cells, neurons, and small organisms. We next expressed highly specialized nanobodies that target conformation-specific endogenous ß2-adrenoreceptor (ß2-AR) in neurosecretory cells, unveiling real-time mobility behaviors of activated and inactivated endogenous conformers during agonist treatment in living cells. We showed that activated ß2-AR (Nb80) is highly immobile and organized in nanoclusters. The Gαs-GPCR complex detected with Nb37 displayed higher mobility with surprisingly similar nanoclustering dynamics to that of Nb80. Activated conformers are highly sensitive to dynamin inhibition, suggesting selective targeting for endocytosis. Inactivated ß2-AR (Nb60) molecules are also largely immobile but relatively less sensitive to endocytic blockade. Expression of single-domain nanobodies therefore provides a unique opportunity to capture highly transient changes in the dynamic nanoscale organization of endogenous proteins.


Assuntos
Modelos Moleculares , Conformação Proteica , Receptores Adrenérgicos beta 2/química , Imagem Individual de Molécula , Anticorpos de Domínio Único/química , Animais , Linhagem Celular , Endocitose , Imunofluorescência , Expressão Gênica , Genes Reporter , Humanos , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Camundongos , Ligação Proteica , Receptores Adrenérgicos beta 2/genética , Receptores Adrenérgicos beta 2/metabolismo , Proteínas Recombinantes de Fusão , Imagem Individual de Molécula/métodos , Anticorpos de Domínio Único/metabolismo , Peixe-Zebra
3.
EMBO Rep ; 19(9)2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30021837

RESUMO

Caveolae are plasma membrane invaginations involved in transport, signalling and mechanical membrane sensing in metazoans. Their formation depends upon multiple interactions between membrane-embedded caveolins, lipids and cytosolic cavin proteins. Of the four cavin family members, only cavin1 is strictly required for caveola formation. Here, we demonstrate that an eleven residue (undecad) repeat sequence (UC1) exclusive to cavin1 is essential for caveolar localization and promotes membrane remodelling through binding to phosphatidylserine. In the notochord of mechanically stimulated zebrafish embryos, the UC1 domain is required for caveolar stability and resistance to membrane stress. The number of undecad repeats in the cavin1 UC1 domain varies throughout evolution, and we find that an increased number also correlates with increased caveolar stability. Lastly, we show that the cavin1 UC1 domain induces dramatic remodelling of the plasma membrane when grafted into cavin2 suggesting an important role in membrane sculpting. Overall, our work defines a novel conserved cavin1 modular domain that controls caveolar assembly and stability.


Assuntos
Cavéolas/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Animais , Proteínas de Transporte/metabolismo , Membrana Celular/metabolismo , Análise Mutacional de DNA , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Células MCF-7 , Proteínas de Membrana/química , Proteínas de Membrana/genética , Notocorda/metabolismo , Células PC-3 , Proteínas de Ligação a Fosfato , Proteínas de Ligação a RNA/química , Estresse Mecânico , Peixe-Zebra , Proteínas de Peixe-Zebra/química , Proteínas de Peixe-Zebra/genética
4.
J Am Chem Soc ; 140(2): 562-565, 2018 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-29249159

RESUMO

Although halide perovskite nanocrystals (NCs) are promising materials for optoelectronic devices, they suffer severely from chemical and phase instabilities. Moreover, the common capping ligands like oleic acid and oleylamine that encapsulate the NCs will form an insulating layer, precluding their utility in optoelectronic devices. To overcome these limitations, we develop a postsynthesis passivation process for CsPbI3 NCs by using a bidentate ligand, namely 2,2'-iminodibenzoic acid. Our passivated NCs exhibit narrow red photoluminescence with exceptional quantum yield (close to unity) and substantially improved stability. The passivated NCs enabled us to realize red light-emitting diodes (LEDs) with 5.02% external quantum efficiency and 748 cd/m2 luminance, surpassing by far LEDs made from the nonpassivated NCs.

6.
Cell Microbiol ; 19(12)2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28778116

RESUMO

Caveolae are composed of 2 major proteins, caveolin 1 (CAV1) and cavin 1 or polymerase transcript release factor I (CAVIN1). Here, we demonstrate that CAV1 levels modulate invasion of Group A Streptococcus (GAS) into nonphagocytic mammalian cells. GAS showed enhanced internalisation into CAV1-knockout mouse embryonic fibroblasts and CAV1 knockdown human epithelial HEp-2 cells, whereas overexpression of CAV1 in HEp-2 cells reduced GAS invasion. This effect was not dependent on the expression of the GAS fibronectin binding protein SfbI, which had previously been implicated in caveolae-mediated uptake. Nor was this effect dependent on CAVIN1, as knockout of CAVIN1 in mouse embryonic fibroblasts resulted in reduced GAS internalisation. Although CAV1 restricted GAS invasion into host cells, we observed only minimal association of invading GAS (strain M1T15448 ) with CAV1 by immunofluorescence and very low association of invading M1T15448 with caveolae by transmission electron microscopy. These observations suggest that physical interaction with caveolae is not needed for CAV1 restriction of invading GAS. An indirect mechanism of action is also consistent with the finding that changing membrane fluidity reverses the increased invasion observed in CAV1-null cells. Together, these results suggest that CAV1 protects host cells against GAS invasion by a caveola-independent mechanism.


Assuntos
Caveolina 1/metabolismo , Endocitose , Células Epiteliais/imunologia , Fibroblastos/imunologia , Fatores Imunológicos/metabolismo , Streptococcus pyogenes/imunologia , Animais , Linhagem Celular , Células Epiteliais/microbiologia , Fibroblastos/microbiologia , Humanos , Camundongos Knockout
7.
Nano Lett ; 17(8): 4759-4767, 2017 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-28657752

RESUMO

Unintentional self-doping in semiconductors through shallow defects is detrimental to optoelectronic device performance. It adversely affects junction properties and it introduces electronic noise. This is especially acute for solution-processed semiconductors, including hybrid perovskites, which are usually high in defects due to rapid crystallization. Here, we uncover extremely low self-doping concentrations in single crystals of the two-dimensional perovskites (C6H5C2H4NH3)2PbI4·(CH3NH3PbI3)n-1 (n = 1, 2, and 3), over three orders of magnitude lower than those of typical three-dimensional hybrid perovskites, by analyzing their conductivity behavior. We propose that crystallization of hybrid perovskites containing large organic cations suppresses defect formation and thus favors a low self-doping level. To exemplify the benefits of this effect, we demonstrate extraordinarily high light-detectivity (1013 Jones) in (C6H5C2H4NH3)2PbI4·(CH3NH3PbI3)n-1 photoconductors due to the reduced electronic noise, which makes them particularly attractive for the detection of weak light signals. Furthermore, the low self-doping concentration reduces the equilibrium charge carrier concentration in (C6H5C2H4NH3)2PbI4·(CH3NH3PbI3)n-1, advantageous in the design of p-i-n heterojunction solar cells by optimizing band alignment and promoting carrier depletion in the intrinsic perovskite layer, thereby enhancing charge extraction.

8.
J Am Chem Soc ; 136(51): 17730-3, 2014 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-25469762

RESUMO

We report about the relationship between the morphology and luminescence properties of methylammonium lead trihalide perovskite thin films. By tuning the average crystallite dimension in the film from tens of nanometers to a few micrometers, we are able to tune the optical band gap of the material along with its photoluminescence lifetime. We demonstrate that larger crystallites present smaller band gap and longer lifetime, which correlates to a smaller radiative bimolecular recombination coefficient. We also show that they present a higher optical gain, becoming preferred candidates for the realization of CW lasing devices.

9.
Science ; 383(6679): eadh3849, 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38207044

RESUMO

Perovskite/silicon tandem solar cells offer a promising route to increase the power conversion efficiency of crystalline silicon (c-Si) solar cells beyond the theoretical single-junction limitations at an affordable cost. In the past decade, progress has been made toward the fabrication of highly efficient laboratory-scale tandems through a range of vacuum- and solution-based perovskite processing technologies onto various types of c-Si bottom cells. However, to become a commercial reality, the transition from laboratory to industrial fabrication will require appropriate, scalable input materials and manufacturing processes. In addition, perovskite/silicon tandem research needs to increasingly focus on stability, reliability, throughput of cell production and characterization, cell-to-module integration, and accurate field-performance prediction and evaluation. This Review discusses these aspects in view of contemporary solar cell manufacturing, offers insights into the possible pathways toward commercial perovskite/silicon tandem photovoltaics, and highlights research opportunities to realize this goal.

10.
Energy Environ Sci ; 16(2): 421-429, 2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36818744

RESUMO

The levelized cost of electricity (LCOE) is a techno-economic analysis that evaluates the cost potential of any electricity-producing technology. LCOE represents a powerful metric to compare the most efficient renewable resources in the framework of the energy transition. Perovskite solar cells (PSCs) are an emerging technology with great potential to establish a leading position in the photovoltaic (PV) market, particularly in those regions that cannot rely on crystalline silicon manufacturing. However, like many emerging technologies, their positioning in the PV market is still quite speculative. Here, we revise the different models to evaluate the LCOE of PSCs, paying attention to the impact of performance, stability, and manufacturing costs. We consider the difference in performances from lab-record devices to modules fabricated in industrial production lines. We identify the key role of the degradation that is hindering the commercialization of PSCs and we analyze the manufacturing cost and the supply chain availability. From our analysis, we restricted the LCOE to 3-6 cents (USD) per kWh, which is competitive with the best of the mainstream silicon technologies (passivated emitter and rear contact, PERC). In conclusion, we highlight the future challenges to refine the LCOE calculations, including temperature effects.

11.
J Phys Chem Lett ; 14(14): 3535-3552, 2023 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-37017277

RESUMO

Ferroelectric ceramics such as PbZrxTi1-xO3 (PZT) are widely applied in many fields, from medical to aerospace, because of their dielectric, piezoelectric, and pyroelectric properties. In the past few years, hybrid organic-inorganic halide perovskites have gradually attracted attention for their optical and electronic properties, including ferroelectricity, and for their low fabrication costs. In this Review, we first describe techniques that are used to quantify ferroelectric figures of merit of a material. We then discuss ferroelectricity in hybrid perovskites, starting from controversies in methylammonium iodoplumbate perovskites and then focusing on low-dimensional perovskites that offer an unambiguous platform to obtain ferroelectricity. Finally, we provide examples of the application of perovskite ferroelectrics in solar cells, LEDs, and X-ray detectors. We conclude that the vast structure-property tunability makes low-dimensional hybrid perovskites promising, but they have yet to offer ferroelectric figures of merit (e.g., saturated polarization) and thermal stability (e.g., Curie temperature) competitive with those of conventional oxide perovskite ferroelectric materials.

12.
Mater Adv ; 4(11): 2410-2417, 2023 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-37287527

RESUMO

Hybrid perovskites have been considered a hot material in the semiconductor industry; included as an active layer in advanced devices, from light emitting applications to solar cells, where they lead as a new strategic solution, they promise to be the next generation high impact class of materials. However, the presence - in most cases - of lead in their matrix, or lead byproducts as a consequence of material degradation, such as PbI2, is currently hindering their massive deployment. Here, we develop a fluorescent organic sensor (FS) based on the Pb-selective BODIPY fluorophore that emits when the analyte - lead in this case - is detected. We carried out a fluorimetric analysis to quantify the trace concentration of Pb2+ released from lead-based perovskite solar cells, exploring different material compositions. In particular, we immersed the devices in rainwater, to simulate the behavior of the devices under atmospheric conditions when the sealing is damaged. The sensor is studied in a phosphate buffer solution (PBS) at pH 4.5 to simulate the pH of acidic rain, and the results obtained are compared with ICP-OES measurements. We found that with fluorometric analysis, lead concentration could be calculated with a detection limit as low as 5 µg l-1, in agreement with ICP-OES analysis. In addition, we investigated the possibility of using the sensor on a solid substrate for direct visualization to determine the presence of Pb. This can constitute the base for the development of a Pb-based label that can switch on if lead is detected, alerting any possible leakage.

13.
Nanoscale ; 15(42): 16984-16991, 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37830448

RESUMO

Perovskite/silicon tandem solar cells have a tremendous potential to boost renewable electricity production thanks to their very high performance combined with promising cost structure. However, for actual field deployment, any solar cell technology needs to be assembled into modules, where the associated processes involve several challenges that may affect both the performance and stability of the devices. For instance, due to its hygroscopic nature, ethylene vinyl acetate (EVA) is incompatible with perovskite-based photovoltaics. To circumvent this issue, we investigate here two alternative encapsulant polymers for the packaging of perovskite/silicon tandems into minimodules: a thermoplastic polyurethane (TPU) and a thermoplastic polyolefin (TPO) elastomer. To gauge their impact on tandem-module performance and stability, we performed two internationally established accelerated module stability tests (IEC 61215): damp heat exposure and thermal cycling. Finally, to better understand the thermomechanical properties of the two encapsulants and gain insight into their relation to the thermal cycling of encapsulated tandems, we performed a dynamic mechanical thermal analysis. Our understanding of the packaging process of the tandem module provides useful insights for the development of commercially viable perovskite photovoltaics.

14.
J Mater Chem A Mater ; 11(24): 12866-12875, 2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37346737

RESUMO

Improving the perovskite/electron-transporting layer (ETL) interface is a crucial task to boost the performance of perovskite solar cells (PSCs). This is utterly fundamental in an inverted (p-i-n) configuration using fullerene-based ETLs. Here, we propose a scalable strategy to improve fullerene-based ETLs by incorporating high-quality few-layer graphene flakes (GFs), industrially produced through wet-jet milling exfoliation of graphite, into phenyl-C61-butyric acid methyl ester (PCBM). Our new composite ETL (GF:PCBM) can be processed into an ultrathin (∼10 nm), pinhole-free film atop the perovskite. We find that the presence of GFs in the PCBM matrix reduces defect-mediated recombination, while creating preferential paths for the extraction of electrons towards the current collector. The use of our GF-based composite ETL resulted in a significant enhancement in the open circuit voltage and fill factor of triple cation-based inverted PSCs, boosting the power conversion efficiency from ∼19% up to 20.8% upon the incorporation of GFs into the ETL.

15.
ACS Nano ; 16(2): 2419-2428, 2022 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-35139300

RESUMO

Two-dimensional transition metal carbides (MXenes) are of great interest as electrode materials for a variety of applications, including solar cells, due to their tunable optoelectronic properties, high metallic conductivity, and attractive solution processability. However, thus far, MXene electrodes have only been exploited for lab-scale device applications. Here, to demonstrate the potential of MXene electrodes at an industry-relevant level, we implemented a scalable spray coating technique to deposit highly conductive (ca. 8000 S/cm, at a ca. 55 nm thickness) Ti3C2Tx films (Tx: surface functional groups, i.e., -OH, -O, -F) via an automated spray system. We employed these Ti3C2Tx films as rear electrodes for silicon heterojunction solar cells as a proof of concept. The spray-deposited MXene flakes have formed a conformal coating on top of the indium tin oxide (ITO)-coated random pyramidal textured silicon wafers, leading to >20% power conversion efficiency (PCE) over both medium-sized (4.2 cm2) and large (243 cm2, i.e., industry-sized 6 in. pseudosquare wafers) cell areas. Notably, the Ti3C2Tx-rear-contacted devices have retained around 99% of their initial PCE for more than 600 days of ambient air storage. Their performance is comparable with state-of-the-art solar cells contacted with sputtered silver electrodes. Our findings demonstrate the high-throughput potential of spray-coated MXene-based electrodes for solar cells in addition to a wider variety of electronic device applications.

16.
Science ; 377(6603): 302-306, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35737811

RESUMO

The performance of perovskite solar cells with inverted polarity (p-i-n) is still limited by recombination at their electron extraction interface, which also lowers the power conversion efficiency (PCE) of p-i-n perovskite-silicon tandem solar cells. A MgFx interlayer with thickness of ~1 nanometer at the perovskite/C60 interface favorably adjusts the surface energy of the perovskite layer through thermal evaporation, which facilitates efficient electron extraction and displaces C60 from the perovskite surface to mitigate nonradiative recombination. These effects enable a champion open-circuit voltage of 1.92 volts, an improved fill factor of 80.7%, and an independently certified stabilized PCE of 29.3% for a monolithic perovskite-silicon tandem solar cell ~1 square centimeter in area. The tandem retained ~95% of its initial performance after damp-heat testing (85°C at 85% relative humidity) for >1000 hours.

17.
Science ; 376(6588): 73-77, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35175829

RESUMO

If perovskite solar cells (PSCs) with high power conversion efficiencies (PCEs) are to be commercialized, they must achieve long-term stability, which is usually assessed with accelerated degradation tests. One of the persistent obstacles for PSCs has been successfully passing the damp-heat test (85°C and 85% relative humidity), which is the standard for verifying the stability of commercial photovoltaic (PV) modules. We fabricated damp heat-stable PSCs by tailoring the dimensional fragments of two-dimensional perovskite layers formed at room temperature with oleylammonium iodide molecules; these layers passivate the perovskite surface at the electron-selective contact. The resulting inverted PSCs deliver a 24.3% PCE and retain >95% of their initial value after >1000 hours at damp-heat test conditions, thereby meeting one of the critical industrial stability standards for PV modules.

18.
J Cell Biol ; 220(3)2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33496726

RESUMO

Caveolae are specialized domains of the vertebrate cell surface with a well-defined morphology and crucial roles in cell migration and mechanoprotection. Unique compositions of proteins and lipids determine membrane architectures. The precise caveolar lipid profile and the roles of the major caveolar structural proteins, caveolins and cavins, in selectively sorting lipids have not been defined. Here, we used quantitative nanoscale lipid mapping together with molecular dynamic simulations to define the caveolar lipid profile. We show that caveolin-1 (CAV1) and cavin1 individually sort distinct plasma membrane lipids. Intact caveolar structures composed of both CAV1 and cavin1 further generate a unique lipid nano-environment. The caveolar lipid sorting capability includes selectivities for lipid headgroups and acyl chains. Because lipid headgroup metabolism and acyl chain remodeling are tightly regulated, this selective lipid sorting may allow caveolae to act as transit hubs to direct communications among lipid metabolism, vesicular trafficking, and signaling.


Assuntos
Cavéolas/metabolismo , Caveolina 1/metabolismo , Lipídeos/química , Animais , Caveolina 1/química , Membrana Celular/metabolismo , Cães , Humanos , Células MCF-7 , Células Madin Darby de Rim Canino , Modelos Biológicos , Simulação de Dinâmica Molecular , Proteínas Mutantes/metabolismo , Fosfatidilserinas/química , Fosfatidilserinas/metabolismo , Ligação Proteica , Domínios Proteicos
19.
Adv Mater ; 33(15): e2005504, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33660306

RESUMO

Perovskite solar cells (PSCs) have become a promising photovoltaic (PV) technology, where the evolution of the electron-selective layers (ESLs), an integral part of any PV device, has played a distinctive role to their progress. To date, the mesoporous titanium dioxide (TiO2 )/compact TiO2 stack has been among the most used ESLs in state-of-the-art PSCs. However, this material requires high-temperature sintering and may induce hysteresis under operational conditions, raising concerns about its use toward commercialization. Recently, tin oxide (SnO2 ) has emerged as an attractive alternative ESL, thanks to its wide bandgap, high optical transmission, high carrier mobility, suitable band alignment with perovskites, and decent chemical stability. Additionally, its low-temperature processability enables compatibility with temperature-sensitive substrates, and thus flexible devices and tandem solar cells. Here, the notable developments of SnO2 as a perovskite-relevant ESL are reviewed with emphasis placed on the various fabrication methods and interfacial passivation routes toward champion solar cells with high stability. Further, a techno-economic analysis of SnO2 materials for large-scale deployment, together with a processing-toxicology assessment, is presented. Finally, a perspective on how SnO2 materials can be instrumental in successful large-scale module and perovskite-based tandem solar cell manufacturing is provided.

20.
Elife ; 102021 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-34142659

RESUMO

Caveolae-associated protein 3 (cavin3) is inactivated in most cancers. We characterized how cavin3 affects the cellular proteome using genome-edited cells together with label-free quantitative proteomics. These studies revealed a prominent role for cavin3 in DNA repair, with BRCA1 and BRCA1 A-complex components being downregulated on cavin3 deletion. Cellular and cell-free expression assays revealed a direct interaction between BRCA1 and cavin3 that occurs when cavin3 is released from caveolae that are disassembled in response to UV and mechanical stress. Overexpression and RNAi-depletion revealed that cavin3 sensitized various cancer cells to UV-induced apoptosis. Supporting a role in DNA repair, cavin3-deficient cells were sensitive to PARP inhibition, where concomitant depletion of 53BP1 restored BRCA1-dependent sensitivity to PARP inhibition. We conclude that cavin3 functions together with BRCA1 in multiple cancer-related pathways. The loss of cavin3 function may provide tumor cell survival by attenuating apoptotic sensitivity and hindering DNA repair under chronic stress conditions.


When cells become cancerous they often stop making certain proteins. This includes a protein known as cavin3 which resides in bulb-shaped pits of the membrane that surrounds the cell called caveolae. These structures work like stress detectors, picking up changes in the membrane and releasing proteins, such as cavin3, into the cell's interior. Past studies suggest that cavin3 might interact with a protein called BRCA1 that suppresses the formation of tumors. Cells with mutations in the gene for BRCA1 struggle to fix damage in their DNA, and have to rely on other repair proteins, such as PARPs (short for poly (ADP-ribose) polymerases). Blocking PARP proteins with drugs can kill cancer cells with problems in their BRCA1 proteins. However, it was unclear what role cavin3 plays in this mechanism. To investigate this, McMahon et al. exposed cells grown in the laboratory to DNA-damaging UV light to stimulate the release of cavin3 from caveolae. This revealed that cavin3 interacts with BRCA1 when cells are under stress, and helps stabilize the protein so it can perform DNA repairs. Cells without cavin3 showed decreased levels of the BRCA1 protein, but compensated for the loss of BRCA1 by increasing the levels of their PARP proteins. These cells also had increased DNA damage following treatment with drugs that block PARPs, similar to cancer cells carrying mutations in the gene for BRCA1. These findings suggest that cavin3 helps BRCA1 to suppress the formation of tumors, and therefore should be considered when developing new anti-cancer treatments.


Assuntos
Proteína BRCA1/metabolismo , Cavéolas/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular , Estresse Fisiológico/genética , Apoptose/genética , Células HeLa , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteoma/genética , Proteômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA