Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Cancers (Basel) ; 16(9)2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38730603

RESUMO

The HER2-positive subtype accounts for approximately one-fifth of all breast cancers. Insensitivity and development of acquired resistance to targeted therapies in some patients contribute to their poor prognosis. HER2 overexpression is associated with metabolic reprogramming, facilitating cancer cell growth and survival. Novel liver X receptor (LXR) ligand GAC0001E5 (1E5) has been shown to inhibit cancer cell proliferation by disrupting glutaminolysis and inducing oxidative stress. In this study, HER2-positive breast cancer cells were treated with 1E5 to determine their potential inhibitory effects and mechanisms of action in HER2-positive breast cancers. Similar to previous observations in other cancer types, 1E5 treatments inhibited LXR activity, expression, and cancer cell proliferation. Expression of fatty acid synthesis genes, including fatty acid synthase (FASN), was downregulated following 1E5 treatment, and results from co-treatment experiments with an FASN inhibitor suggest that the same pathway is targeted by 1E5. Treatments with 1E5 disrupted glutaminolysis and resulted in increased oxidative stress. Strikingly, HER2 transcript and protein levels were both significantly downregulated by 1E5. Taken together, these findings indicate the therapeutic potential of targeting HER2 overexpression and associated metabolic reprogramming via the modulation of LXR in HER2-positive breast cancers.

2.
Biomolecules ; 13(2)2023 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-36830714

RESUMO

Liver X receptors (LXRs) are members of the nuclear receptor family of ligand-dependent transcription factors which regulate the expression of lipid and cholesterol metabolism genes. Moreover, LXRs and their ligands have been shown to inhibit tumor growth in a variety of cancers. We have previously identified the small molecule compound GAC0001E5 (1E5) as an LXR inverse agonist and a potent inhibitor of pancreatic cancer cells. Transcriptomic and metabolomic studies showed that 1E5 disrupts glutamine metabolism, an essential metabolic pathway commonly reprogrammed during malignant transformation, including in breast cancers. To determine the role of LXRs and potential application of 1E5 in breast cancer, we examined LXR expression in publicly available clinical samples, and found that LXR expression is elevated in breast tumors as compared to normal tissues. In luminal A, endocrine therapy-resistant, and triple-negative breast cancer cells, 1E5 exhibited LXR inverse agonist and "degrader" activity and strongly inhibited cell proliferation and colony formation. Treatments with 1E5 downregulated the transcription of key glutaminolysis genes, and, correspondingly, biochemical assays indicated that 1E5 lowered intracellular glutamate and glutathione levels and increased reactive oxygen species. These results indicate that novel LXR ligand 1E5 is an inhibitor of glutamine metabolism and redox homeostasis in breast cancers and suggest that modulating LXR activity and expression in tumor cells is a promising strategy for targeting metabolic reprogramming in breast cancer therapeutics.


Assuntos
Neoplasias da Mama , Receptores Nucleares Órfãos , Humanos , Feminino , Receptores X do Fígado/metabolismo , Receptores Nucleares Órfãos/metabolismo , Ligantes , Agonismo Inverso de Drogas , Glutamina/metabolismo , Homeostase , Oxirredução
3.
Elife ; 92020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31939740

RESUMO

SynGAP is a postsynaptic density (PSD) protein that binds to PDZ domains of the scaffold protein PSD-95. We previously reported that heterozygous deletion of Syngap1 in mice is correlated with increased steady-state levels of other key PSD proteins that bind PSD-95, although the level of PSD-95 remains constant (Walkup et al., 2016). For example, the ratio to PSD-95 of Transmembrane AMPA-Receptor-associated Proteins (TARPs), which mediate binding of AMPA-type glutamate receptors to PSD-95, was increased in young Syngap1+/-mice. Here we show that only females and not males show a highly significant correlation between an increase in TARP and a decrease in synGAP in the PSDs of Syngap1+/-rodents. The data reveal a sex difference in the adaptation of the PSD scaffold to synGAP haploinsufficiency.


Assuntos
Proteínas Ativadoras de GTPase/metabolismo , Haploinsuficiência , Densidade Pós-Sináptica/metabolismo , Animais , Sistemas CRISPR-Cas , Feminino , Proteínas Ativadoras de GTPase/genética , Masculino , Camundongos , Camundongos Knockout , Fosforilação , Fatores Sexuais
4.
Neuroimage Clin ; 17: 761-767, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29527483

RESUMO

The FMR1 premutation confers a 40-60% risk for males of developing a neurodegenerative disease called the Fragile X-associated Tremor Ataxia Syndrome (FXTAS). FXTAS is a late-onset disease that primarily involves progressive symptoms of tremor and ataxia, as well as cognitive decline that can develop into dementia in some patients. At present, it is not clear whether changes to brain function are detectable in motor regions prior to the onset of frank symptomatology. The present study therefore aimed to utilize an fMRI motor task for the first time in an asymptomatic premutation population. Premutation carriers without a diagnosis of FXTAS (n = 17) and a group of healthy male controls (n = 17), with an age range of 24-68 years old, were recruited for this cross-sectional study. This study utilized neuroimaging, molecular and clinical measurements, employing an fMRI finger-tapping task with a block design consisting of sequential finger-tapping, random finger-tapping and rest conditions. The imaging analysis contrasted the sequential and random conditions to investigate activation changes in response to a change in task demand. Additionally, measurements were obtained of participant tremor, co-ordination and balance using the CATSYS-2000 system and measures of FMR1 mRNA were quantified from peripheral blood samples using quantitative real-time PCR methodology. Premutation carriers demonstrated significantly less cerebellar activation than controls during sequential versus random finger tapping (FWEcorr < 0.001). In addition, there was a significant age by group interaction in the hippocampus, inferior parietal cortex and temporal cortex originating from a more negative relationship between brain activation and age in the carrier group compared to the controls (FWEcorr < 0.001). Here, we present for the first time functional imaging-based evidence for early movement-related neurodegeneration in Fragile X premutation carriers. These changes pre-exist the diagnosis of FXTAS and are greatest in older carriers suggesting that they may be indicative of FXTAS vulnerability.


Assuntos
Envelhecimento , Ataxia/genética , Ataxia/patologia , Encéfalo/fisiopatologia , Proteína do X Frágil da Deficiência Intelectual/genética , Síndrome do Cromossomo X Frágil/genética , Síndrome do Cromossomo X Frágil/patologia , Tremor/genética , Tremor/patologia , Expansão das Repetições de Trinucleotídeos/genética , Adulto , Idoso , Ataxia/fisiopatologia , Encéfalo/diagnóstico por imagem , Estudos de Casos e Controles , Estudos Transversais , Síndrome do Cromossomo X Frágil/fisiopatologia , Humanos , Processamento de Imagem Assistida por Computador , Modelos Lineares , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Oxigênio/sangue , Equilíbrio Postural/fisiologia , Desempenho Psicomotor/fisiologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Tremor/fisiopatologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA