Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Mol Pharm ; 17(3): 827-836, 2020 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-31990560

RESUMO

Olive pollen is one of the most important causes of respiratory allergy, with Ole e 1 being the most clinically relevant sensitizing allergen. Peptide-based vaccines represent promising therapeutic approaches, but the use of adjuvants is required to strengthen the weak immunogenicity of small peptides. We propose the use of dendrimeric scaffolds conjugated to the T cell immunodominant epitope of Ole e 1 (OE109-130) for the development of novel vaccines against olive pollen allergy. Four dendrimeric scaffolds containing an ester/ether with nine mannoses, an ester succinimidyl linker with nine N-acetyl-glucosamine units or nine ethylene glycol units conjugated to OE109-130 peptide were designed, and their cytotoxicity, internalization pattern, and immunomodulatory properties were analyzed in vitro. None of the dendrimers exhibited cytotoxicity in humanized rat basophil (RBL-2H3), human bronchial epithelial Calu-3, and human mast LAD2 cell lines. Confocal images indicated that mannosylated glycodendropeptides exhibited lower colocalization with a lysosomal marker. Moreover, mannosylated glycodendropeptides showed higher transport tendency through the epithelial barrier formed by Calu-3 cells cultured at the air-liquid interface. Finally, mannosylated glycodendropeptides promoted Treg and IL10+Treg proliferation and IL-10 secretion by peripheral blood mononuclear cells from allergic patients. Mannosylated dendrimers conjugated with OE109-130 peptide from Ole e 1 have been identified as suitable candidates for the development of novel vaccines of olive pollen allergy.


Assuntos
Antígenos de Plantas/química , Dendrímeros/química , Manose/imunologia , Olea/química , Olea/imunologia , Peptídeos/imunologia , Proteínas de Plantas/química , Pólen/imunologia , Rinite Alérgica Sazonal/prevenção & controle , Vacinas de Subunidades Antigênicas/imunologia , Adjuvantes Imunológicos/química , Animais , Antígenos de Plantas/imunologia , Linhagem Celular Tumoral , Sobrevivência Celular/imunologia , Citocinas/análise , Citocinas/metabolismo , Células Epiteliais/imunologia , Células Epiteliais/metabolismo , Epitopos de Linfócito T/química , Epitopos de Linfócito T/imunologia , Humanos , Imunogenicidade da Vacina , Manose/química , Peptídeos/química , Proteínas de Plantas/imunologia , Ratos , Mucosa Respiratória/imunologia , Mucosa Respiratória/metabolismo , Rinite Alérgica Sazonal/sangue , Rinite Alérgica Sazonal/imunologia , Linfócitos T/imunologia , Linfócitos T/metabolismo
2.
J Immunol ; 195(2): 445-9, 2015 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-26041541

RESUMO

Olive (Olea europaea) pollen constitutes one of the most important allergen sources in the Mediterranean countries and some areas of the United States, South Africa, and Australia. Recently, we provided evidence that olive pollen releases nanovesicles of respirable size, named generically pollensomes, during in vitro germination. Olive pollensomes contain allergens, such as Ole e 1, Ole e 11, and Ole e 12, suggesting a possible role in allergy. The aim of this study was to assess the contribution of pollensomes to the allergic reaction. We show that pollensomes exhibit allergenic activity in terms of patients' IgE-binding capacity, human basophil activation, and positive skin reaction in sensitized patients. Furthermore, allergen-containing pollensomes have been isolated from three clinically relevant nonphylogenetically related species: birch (Betula verrucosa), pine (Pinus sylvestris), and ryegrass (Lolium perenne). Most interesting, pollensomes were isolated from aerobiological samples collected with an eight-stage cascade impactor collector, indicating that pollensomes secretion is a naturally occurring phenomenon. Our findings indicate that pollensomes may represent widespread vehicles for pollen allergens, with potential implications in the allergic reaction.


Assuntos
Basófilos/imunologia , Hipersensibilidade/imunologia , Pólen/imunologia , Animais , Antígenos de Plantas/isolamento & purificação , Antígenos de Plantas/farmacologia , Teste de Degranulação de Basófilos , Basófilos/efeitos dos fármacos , Basófilos/patologia , Betula/química , Betula/imunologia , Estudos de Casos e Controles , Germinação , Humanos , Hipersensibilidade/sangue , Hipersensibilidade/patologia , Soros Imunes/química , Imunoglobulina E/sangue , Lolium/química , Lolium/imunologia , Camundongos , Olea/química , Olea/imunologia , Pinus/química , Pinus/imunologia , Extratos Vegetais/química , Extratos Vegetais/imunologia , Proteínas de Plantas/isolamento & purificação , Proteínas de Plantas/farmacologia , Pólen/química , Cultura Primária de Células
4.
Langmuir ; 32(42): 11055-11062, 2016 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-27723354

RESUMO

Aeroallergens are airborne substances-mainly proteins-capable of triggering Th2-immune responses in respiratory allergies. They enter into the body through the upper airways, reaching the mucosa afterward. Mucosae lining at the luminal side consists of an epithelial barrier completely covered by mucus and pulmonary surfactant. Both pulmonary surfactant and plasma membrane of the epithelial cells represent two physiological phospholipid-based barriers where allergens first impact before triggering their biological effects. The interaction of allergens with lipids at relevant physiological surfaces could promote structural changes on the molecule, resulting on a potential modification of its allergenic properties. In this work, we have first described the surface and phospholipid interaction capabilities of the clinically relevant aeroallergen Ole e 1, the main allergen of olive tree pollen. By using epifluorescence microscopy of Langmuir transferred films, we observed that lipid-packed ordered domains may function as a preferential location for allergen to accumulate at the air-liquid interface, an effect that is abolished in the presence of cholestenone. The possible implications of phospholipid-interfacial effects in the modification of allergen structural and functional properties will be discussed.

5.
Methods ; 66(1): 44-54, 2014 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-23920474

RESUMO

Olive tree is one of the main allergy sources in Mediterranean countries. The identification of the allergenic repertoire from olive pollen has been essential for the development of rational strategies of standardization, diagnosis, and immunotherapy, all of them focused to increase the life quality of the patients. From its complex allergogram, twelve allergens - Ole e 1 to Ole e 12 - have been identified and characterized to date. Most of them have been cloned and produced as recombinant forms, whose availability have allowed analyzing their three-dimensional structures, mapping their T-cell and B-cell epitopes, and determining the precise allergenic profile of patients for a subsequent patient-tailored immunotherapy. Protein mutant, hypoallergenic derivatives, or recombinant fragments have been also useful experimental tools to analyze the immune recognition of allergens. To test these molecules before using them for clinic purposes, a mouse model of allergic sensitizations has been used. This model has been helpful for assaying different prophylactic approaches based on tolerance induction by intranasal administration of allergens or hypoallergens, used as free or integrated in different delivery systems, and their findings suggest a promising utilization as nasal vaccines. Exosomes - nanovesicles isolated from bronchoalveolar lavage fluid of tolerogenic mice - have shown immunomodulatory properties, being able to protect mice against sensitization to Ole e 1.


Assuntos
Alérgenos/imunologia , Olea/imunologia , Proteínas de Plantas/imunologia , Pólen/imunologia , Rinite Alérgica Sazonal/imunologia , Animais , Western Blotting , Frutas/imunologia , Humanos , Imunoglobulina E/sangue , Imunoglobulina E/química , Proteínas Recombinantes/imunologia , Rinite Alérgica Sazonal/diagnóstico , Rinite Alérgica Sazonal/terapia , Vacinação
8.
Front Allergy ; 4: 1093800, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36793545

RESUMO

The "epithelial barrier hypothesis" states that a barrier dysfunction can result in allergy development due to tolerance breakdown. This barrier alteration may come from the direct contact of epithelial and immune cells with the allergens, and indirectly, through deleterious effects caused by environmental changes triggered by industrialization, pollution, and changes in the lifestyle. Apart from their protective role, epithelial cells can respond to external factors secreting IL-25 IL-33, and TSLP, provoking the activation of ILC2 cells and a Th2-biased response. Several environmental agents that influence epithelial barrier function, such as allergenic proteases, food additives or certain xenobiotics are reviewed in this paper. In addition, dietary factors that influence the allergenic response in a positive or negative way will be also described here. Finally, we discuss how the gut microbiota, its composition, and microbe-derived metabolites, such as short-chain fatty acids, alter not only the gut but also the integrity of distant epithelial barriers, focusing this review on the gut-lung axis.

9.
Foods ; 10(6)2021 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-34072292

RESUMO

2S albumins are relevant and often major allergens from several tree nuts and seeds, affecting mainly children and young people. The present study aims to assess how the structural features of 2S albumins could affect their immunogenic capacity, which is essential to comprehend the role of these proteins in food allergy. For this purpose, twelve 2S albumins were isolated from their respective extracts by chromatographic methods and identified by MALDI-TOF mass-spectrometry. Their molecular and structural characterization was conducted by electrophoretic, spectroscopic and in silico methods, showing that these are small proteins that comprise a wide range of isoelectric points, displaying a general high structure stability to thermal treatment. Despite low amino acid sequence identity, these proteins share structural features, pointing conformational epitopes to explain cross-reactivity between them. Immunoblotting with allergic patients' sera revealed those possible correlations between evolutionarily distant 2S albumins from different sources. The availability of a well-characterized panel of 2S albumins from plant-derived sources allowed establishing correlations between their structural features and their allergenic potential, including their role in cross-reactivity processes.

10.
Clin Transl Allergy ; 11(7): e12051, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34582104

RESUMO

BACKGROUND: Several studies have shown a correlation between an altered metabolome and respiratory allergies. The epithelial barrier hypothesis proposes that an epithelial barrier dysfunction can result in allergic diseases development. Der p 1 allergen from house dust mite is a renowned epithelial barrier disruptor and allergy initiator due to its cysteine-protease activity. Here, we compared the metabolic profile of the bronchial epithelium exposed or not to Der p 1 during barrier establishment to understand its active role in allergy development. METHODS: Calu-3 cells were cultivated in air-liquid interface cultures and exposed to either Der p 1 or Ole e 1 allergens during barrier establishment. The comparative metabolomics analysis of apical and basolateral media were performed using liquid chromatography and capillary electrophoresis both coupled to mass spectrometry. RESULTS: We showed that epithelial barrier disruption by Der p 1 was associated with a specific metabolic profile, which was highly dependent on the state of the epithelium at the time of contact. Moreover, an apical-basolateral distribution of the metabolites was also observed, indicating a compartmentalization of the response with differential metabolic patterns. A number of metabolites were changed by Der p 1, mainly related to amino acids metabolism, such as L-arginine, L-kynurenine and L-methionine. CONCLUSION: This work is the first report on the metabolic response in human bronchial epithelial cells associated with cysteine-protease Der p 1 activity, which could contribute to allergy development. Moreover, it supports a reformulated epithelial barrier hypothesis that might help to explain allergies and their increasing prevalence.

11.
Immunol Cell Biol ; 88(6): 658-66, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20195280

RESUMO

Inhaled allergens are known for their immediate and ongoing effects in the respiratory tract (RT). In this report, we track inhaled antigen in normal mice for 7 days and find that while it is cleared from the airways, inhaled antigen persists in peripheral lung tissue and the draining lymph nodes (DLNs). The persistence of antigen led to ongoing presentation in the lymph nodes, but not the lungs, that decreased with time in direct proportion with the frequency of antigen-bearing RT dendritic cells (DCs). There was evidence of functional changes among the antigen-bearing DCs in the lymph nodes, as the expression of CD40, CD80 and CD86 were modulated over the course of 7 days. At the same time, there was a decrease in both CD4(+) T-cell proliferation in lymph nodes and the generation of recirculating CD4(+) T cells. However, early presentation of lower doses of inhaled antigen also resulted in a decrease in CD4(+) T-cell proliferation and recirculation. Thus, T-cell recirculation depends on the strength of stimulus in the DLNs and is produced by a combination of the dose of antigen delivered to the RT, DC migration and co-stimulatory molecule expression. These results provide an important insight into the fate of inhaled antigen in vivo and the influence of persistent antigen presentation on T-cell activation in the lymph nodes.


Assuntos
Linfócitos T CD4-Positivos/metabolismo , Células Dendríticas/metabolismo , Pulmão/metabolismo , Linfonodos/metabolismo , Ovalbumina/farmacocinética , Animais , Apresentação de Antígeno/genética , Apresentação de Antígeno/imunologia , Antígenos CD/biossíntese , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/patologia , Diferenciação Celular , Movimento Celular , Proliferação de Células , Células Cultivadas , Células Dendríticas/imunologia , Células Dendríticas/patologia , Pulmão/imunologia , Linfonodos/imunologia , Linfonodos/patologia , Ativação Linfocitária/genética , Ativação Linfocitária/imunologia , Camundongos , Camundongos Transgênicos , Ovalbumina/administração & dosagem
12.
J Immunol ; 181(2): 1519-25, 2008 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-18606707

RESUMO

Exosomes are nanovesicles originating from multivesicular bodies that are secreted by a variety of cell types. The dual capability of exosomes to promote immunity or to induce tolerance has prompted their clinical use as vehicles for vaccination against different human diseases. In the present study, the effect of allergen-specific exosomes from tolerized mice on the development of allergen-induced allergic response was determined using a mouse model. Mice were tolerized by respiratory exposure to the olive pollen allergen Ole e 1. Exosome-like vesicles were isolated from bronchoalveolar lavage fluid of the animals by the well-established filtration and ultracentrifugation procedure, characterized by electron microscopy, Western blot, and FACS analyses, and assessed in a prophylactic protocol. To this end, BALB/c mice were intranasally treated with tolerogenic exosomes or naive exosomes as control, 1 wk before sensitization/challenge to Ole e 1. Blood, lungs, and spleen were collected and analyzed for immune responses. Intranasal administration of tolerogenic exosomes inhibited the development of IgE response, Th2 cytokine production, and airway inflammation--cardinal features of allergy--and maintained specific long-term protection in vivo. This protective effect was associated with a concomitant increase in the expression of the regulatory cytokine TGF-beta. These observations demonstrate that exosomes can induce tolerance and protection against allergic sensitization in mice. Thus, exosome-based vaccines could represent an alternative to conventional therapy for allergic diseases in humans.


Assuntos
Alérgenos/imunologia , Líquido da Lavagem Broncoalveolar/imunologia , Hipersensibilidade/prevenção & controle , Tolerância Imunológica , Proteínas de Plantas/imunologia , Células Th2/imunologia , Vesículas Transportadoras/imunologia , Administração Intranasal , Alérgenos/administração & dosagem , Animais , Antígenos de Plantas , Modelos Animais de Doenças , Feminino , Hipersensibilidade/imunologia , Imunoglobulina E/sangue , Inflamação , Interferon gama/imunologia , Interferon gama/metabolismo , Interleucina-10/imunologia , Interleucina-10/metabolismo , Pulmão/citologia , Pulmão/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Microscopia Eletrônica de Transmissão , Proteínas de Plantas/administração & dosagem , Pólen , Células Th2/metabolismo , Fator de Crescimento Transformador beta/imunologia , Fator de Crescimento Transformador beta/metabolismo , Vesículas Transportadoras/ultraestrutura
14.
Mol Immunol ; 45(2): 438-45, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17662454

RESUMO

Mucosal tolerance induction with vaccines based on peptides representing T-cell epitopes of allergens is a promising way for treating allergic diseases. Ole e 1 is the main allergen of olive pollen, which is an important cause of allergy in Mediterranean countries. The aim of this study was to evaluate the ability of the peptide T109-K130 containing a dominant T-cell epitope of Ole e 1, to modulate the allergen-specific immune response in a prophylactic mouse model. Mice were intranasally treated with the peptide 1 week prior to sensitization with Ole e 1. Blood, lungs and spleens were collected and analysed for immune response. Intranasal pretreatment of mice with the peptide led to suppress serum specific IgE, IgG1 and IgG2a antibody levels, and markedly reduced proliferative T-cell response and Th2-cytokine production, but increased IFN-gamma secretion in spleen cell cultures. Increased mRNA IL-10 levels were observed in lungs from pretreated mice. Pathologic alterations of the lung associated with airway inflammation (peribronchial/perivascular infiltrates, eosinophilia and mucus production) were significantly suppressed after pretreatment. Similar results were obtained when mice were sensitized 10 weeks after treatment. Our results demonstrate that intranasal administration of a single T-cell peptide protects mice against subsequent sensitization to the allergen, possibly via IFN-gamma and IL-10. This study emphasizes the usefulness of nasal peptide T-based vaccines against allergy.


Assuntos
Alérgenos/administração & dosagem , Epitopos de Linfócito T/administração & dosagem , Hipersensibilidade/prevenção & controle , Imunização , Peptídeos/administração & dosagem , Proteínas de Plantas/administração & dosagem , Pólen/química , Administração Intranasal , Alérgenos/farmacologia , Animais , Antígenos de Plantas , Proliferação de Células/efeitos dos fármacos , Epitopos de Linfócito T/farmacologia , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Tolerância Imunológica/efeitos dos fármacos , Imunoglobulina E/imunologia , Inflamação , Interferon gama/biossíntese , Interleucina-10/genética , Interleucina-10/metabolismo , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Peptídeos/farmacologia , Proteínas de Plantas/farmacologia , Sistema Respiratório/efeitos dos fármacos , Sistema Respiratório/patologia , Fatores de Tempo , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo
15.
Nutrients ; 11(6)2019 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-31181780

RESUMO

Allium genus plants, such as leek (Allium porrum), are rich sources of anti-inflammatory and anti-oxidant secondary metabolites; this is of interest because it demonstrates their suitability as pharmacological alternatives for inflammatory processes, including allergy treatment. The composition of methanolic leek extract (LE) was analyzed by GC-MS and LC-IT/MS, and the total phenolic content and antioxidant capacity were quantified by colorimetric methods. Its pharmacological potential was analyzed in human bronchial epithelial Calu-3 cells, human mast cells LAD2, and humanized rat basophiles RBL-2H3. LE exhibited a cytotoxic effect on Calu-3 cells and HumRBL-2H3 cells only at high concentrations and in a dose-dependent manner. Moreover, LE decreased the degranulation of LAD2 and HumRBL-2H3 cells. LE treatment also significantly prevented alterations in transepithelial electrical resistance values and mRNA levels of glutathione-S-transferase (GST), c-Jun, and NFκB after treatment with H2O2 in ALI-cultured Calu-3 cells. Finally, ALI-cultured Calu-3 cells treated with LE showed lower permeability to Ole e 1 compared to untreated cells. A reduction in IL-6 secretion in ALI-cultured Calu-3 cells treated with LE was also observed. In summary, the results obtained in this work suggest that A. porrum extract may have potential anti-allergic effects due to its antioxidant and anti-inflammatory properties. This study provides several important insights into how LE can protect against allergy.


Assuntos
Antialérgicos/farmacologia , Brônquios/efeitos dos fármacos , Degranulação Celular/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Mastócitos/efeitos dos fármacos , Cebolas/química , Fenóis/uso terapêutico , Animais , Antialérgicos/análise , Antialérgicos/uso terapêutico , Anti-Inflamatórios/análise , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Antioxidantes/análise , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Brônquios/citologia , Brônquios/metabolismo , Linhagem Celular , Humanos , Hipersensibilidade/metabolismo , Hipersensibilidade/prevenção & controle , Inflamação/metabolismo , Inflamação/prevenção & controle , Mediadores da Inflamação/metabolismo , Fenóis/análise , Fenóis/farmacologia , Fitoterapia , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Ratos
16.
Redox Biol ; 26: 101256, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31229842

RESUMO

Environmental proteases have been widely associated to the pathogenesis of allergic disorders. Der p 1, a cysteine-protease from house dust mite (HDM) Dermatophagoides pteronyssinus, constitutes one of the most clinically relevant indoor aeroallergens worldwide. Der p 1 protease activity depends on the redox status of its catalytic cysteine residue, which has to be in the reduced state to be active. So far, it is unknown whether Der p 1-protease activity could be regulated by host redox microenvironment once it reaches the lung epithelial lining fluid in addition to endogenous mite components. In this sense, Glutathione-S-transferase pi (GSTpi), an enzyme traditionally linked to phase II detoxification, is highly expressed in human lung epithelial cells, which represent the first line of defence against aeroallergens. Moreover, GSTpi is a generalist catalyst of protein S-glutathionylation reactions, and some polymorphic variants of this enzyme has been associated to the development of allergic asthma. Here, we showed that human GSTpi increased the cysteine-protease activity of Der p 1, while GSTmu (the isoenzyme produced by the mite) did not alter it. GSTpi induces the reduction of Cys residues in Der p 1, probably by rearranging its disulphide bridges. Furthermore, GSTpi was detected in the apical medium collected from human bronchial epithelial cell cultures, and more interesting, it increased cysteine-protease activity of Der p 1. Our findings support the role of human GSTpi from airways in modulating of Der p 1 cysteine-protease activity, which may have important clinical implications for immune response to this aeroallergen in genetically susceptible individuals.


Assuntos
Antígenos de Dermatophagoides/metabolismo , Proteínas de Artrópodes/metabolismo , Cisteína Endopeptidases/metabolismo , Cisteína/metabolismo , Dermatophagoides pteronyssinus/química , Células Epiteliais/enzimologia , Glutationa S-Transferase pi/metabolismo , Animais , Antígenos de Dermatophagoides/imunologia , Proteínas de Artrópodes/imunologia , Brônquios/citologia , Brônquios/enzimologia , Brônquios/imunologia , Linhagem Celular , Cisteína/imunologia , Cisteína Endopeptidases/imunologia , Dermatophagoides pteronyssinus/enzimologia , Dermatophagoides pteronyssinus/imunologia , Células Epiteliais/citologia , Células Epiteliais/imunologia , Glutationa S-Transferase pi/imunologia , Humanos , Isoenzimas/imunologia , Isoenzimas/metabolismo , Cinética , Oxirredução , Proteólise , Especificidade da Espécie
17.
J Biotechnol ; 134(1-2): 1-8, 2008 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-18289711

RESUMO

Fungal ribotoxins are a family of extracellular ribonucleases which inhibit protein biosynthesis by inactivating the ribosomes. This inactivation results in the induction of cell death by apoptosis. Ribotoxins show antitumoral properties based on their ability to cross the membrane of some transformed cells. Unfortunately, they also show an unspecific cytotoxicity which has greatly impaired their potential clinical uses. alpha-Sarcin, produced by Aspergillus giganteus, is the best-characterized ribotoxin. Asp f 1, another ribotoxin produced by A. fumigatus, is indeed one of its major allergens. In this work, the Lactococcus lactis MG1363 strain has been engineered to produce and secrete not only wild-type Asp f 1 and alpha-sarcin but also three different mutants with reduced cytotoxicity and/or IgE-binding affinity. The proteins were secreted in native and active form when the extracellular medium employed was buffered at pH values around 8.0. Strains producing the wild-type natural alpha-sarcin were proved to be innocuous when administered intragastrically to mice for a period of 14 days. Overall, the results presented are discussed in terms of its potential application as a vehicle of oral delivery of hypoallergenic variants as well as a starting point to approach the design of strategies to accomplish the safe delivery of these proteins as antitumoral agents.


Assuntos
Imunoglobulina E/metabolismo , Lactococcus lactis/metabolismo , Micotoxinas/metabolismo , Animais , Eletroforese em Gel de Poliacrilamida , Endorribonucleases/genética , Endorribonucleases/metabolismo , Feminino , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Engenharia Genética/métodos , Intestino Delgado/microbiologia , Lactococcus lactis/genética , Camundongos , Camundongos Endogâmicos BALB C , Micotoxinas/genética , Plasmídeos/genética , Ligação Proteica
18.
Biomed Pharmacother ; 61(1): 1-7, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17188831

RESUMO

Numerous pollen allergens have been reported over the last few years. Most of them belong to well-known families of proteins but some others constitute the first member of new allergenic families. Some of the factors that can contribute to the detection and identification of new pollen allergens are: a) advances in the technology tools for molecular analysis; and b) the deep knowledge of many allergenic sources. The combination of these factors has provided vast information on the olive pollen allergogram and the identification of minor allergens that become major ones for a significant population. The close taxonomical relationship between olive tree and ash -both Oleaceae- has permitted to identify Fra e 1 (the Ole e 1-like allergen) in ash pollen and to detect the presence of protein homologues of Ole e 3 and Ole e 6. In the other hand, extensive areas of south Europe are suffering an increasing desertification. As a consequence of this, new botanical species are spontaneously growing in these areas or being used in greening ground programs: Chenopodium album and Salsola kali are some examples recently recognized as allergenic woods. The identification of the complete panel of allergens from the hypersensitizing sources might help to develop more accurate diagnosis, and efficient and safer therapy tools for Type-I allergic diseases.


Assuntos
Alérgenos , Pólen/imunologia , Extratos Vegetais/imunologia , Extratos Vegetais/isolamento & purificação
19.
Mol Immunol ; 43(6): 570-8, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15941589

RESUMO

Ole e 1 is a major allergen from olive pollen with an IgE-binding frequency around 80% among allergic population. Its diagnostic value has been demonstrated, and cross-reactive allergens have been found in ash, lilac and privet. We sought to determine IgE- and IgG-binding regions of Ole e 1. Ole e 1-specific polyclonal antiserum and sera from patients allergic to olive pollen were used to analyze IgG and IgE epitopes, respectively. Short overlapping synthetic peptides covering the complete sequence of Ole e 1 and point mutants of these peptides bound to membranes, as well as long recombinant peptides fused to GST were used in dot blot immunostaining and ELISA. Skin prick tests were performed on 14 allergic patients to assay the response in vivo to the recombinant fusion peptides. Residues at positions 8-11, 29, 32, 33, 55-59, 70, 107-110, 112, 120, 123, 141 of Ole e 1 sequence were found to be antigenically relevant in the IgG-binding. Although amino acids K137, L138, G139, Y141 and P142 were involved in the IgE-recognition of a pool of sera from allergic individuals, the response to the IgEs seemed to be preferentially conformational. IgE-binding capability of recombinant GST-fused peptide T114-M145 was demonstrated by in vivo (prick test) and in vitro (ELISA) experiments. Major IgG and IgE-binding regions of Ole e 1 have been identified being the C-terminal an immunodominant region. These data could help to design hypoallergenic forms of the allergen.


Assuntos
Alérgenos/imunologia , Linfócitos B , Epitopos de Linfócito B/imunologia , Epitopos Imunodominantes/química , Imunoglobulina E/imunologia , Imunoglobulina G/imunologia , Proteínas de Plantas/imunologia , Sequência de Aminoácidos , Antígenos de Plantas , Linfócitos B/imunologia , Mapeamento de Epitopos , Humanos , Imunoensaio , Imunoglobulina E/química , Imunoglobulina G/química , Olea , Pólen/imunologia , Conformação Proteica , Rinite Alérgica Sazonal/sangue
20.
J Biotechnol ; 121(3): 402-9, 2006 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-16168508

RESUMO

Pollens have been reported as important sources of antigens causing type-I allergy and, among them, olive pollen has high clinical relevance in Mediterranean countries. The most recently described olive allergen, Ole e 10, is involved in cross-reactivity phenomena and related to asthma induction in allergic patients. These immunologic features make this allergen a good candidate to be included in diagnosis and therapy of protocols of allergic diseases. Since the availability of Ole e 10 from the olive pollen is limited, the allergen has been efficiently expressed in the baculovirus/insect cell system. The Ole e 10-cDNA inserted into the transfer vector pBacPAK8 allowed the expression of the recombinant protein in cultured Sf21 cells. Recombinant Ole e 10 (rOle e 10) was purified from the culture after dialysis and three chromatographic steps. Mass spectrometry, Edman degradation, IgE- and IgG-binding analyses were employed to characterize the recombinant allergen, which showed molecular and immunological equivalence with the natural protein. Affinity gel electrophoresis in presence of laminarin (1,3-beta-glucan) revealed that rOle e 10 retains identical carbohydrate-binding capacity than the natural allergen. In conclusion, the recombinant expression of Ole e 10 in baculovirus/insect cell system produces a homogeneous and biologically active allergen that could be useful for clinical and scientific purposes.


Assuntos
Alérgenos/imunologia , Variação Genética , Olea/imunologia , Proteínas de Plantas/genética , Pólen/imunologia , Sequência de Aminoácidos , Animais , Baculoviridae/genética , Western Blotting , Células Cultivadas , Clonagem Molecular , Eletroforese em Gel de Poliacrilamida , Ensaio de Imunoadsorção Enzimática , Humanos , Hipersensibilidade/etiologia , Hipersensibilidade/fisiopatologia , Imunoglobulina E/imunologia , Insetos/citologia , Espectrometria de Massas , Peso Molecular , Olea/genética , Proteínas de Plantas/química , Proteínas de Plantas/imunologia , Proteínas de Plantas/isolamento & purificação , Proteínas Recombinantes/química , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA