Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Plant Physiol ; 183(2): 793-807, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32123040

RESUMO

RNA splicing is a fundamental mechanism contributing to the definition of the cellular protein population in any given environmental condition. DNA-DAMAGE REPAIR/TOLERATION PROTEIN111 (DRT111)/SPLICING FACTOR FOR PHYTOCHROME SIGNALING is a splicing factor previously shown to interact with phytochrome B and characterized for its role in splicing of pre-mRNAs involved in photomorphogenesis. Here, we show that DRT111 interacts with Arabidopsis (Arabidopsis thaliana) Splicing Factor1, involved in 3' splicing site recognition. Double- and triple-mutant analysis shows that DRT111 controls splicing of ABI3 and acts upstream of the splicing factor SUPPRESSOR OF ABI3-ABI5. DRT111 is highly expressed in seeds and stomata of Arabidopsis and is induced by long-term treatments of polyethylene glycol and abscisic acid (ABA). DRT111 knock-out mutants are defective in ABA-induced stomatal closure and are hypersensitive to ABA during seed germination. Conversely, DRT111 overexpressing plants show ABA-hyposensitive seed germination. RNA-sequencing experiments show that in dry seeds, DRT111 controls expression and splicing of genes involved in osmotic-stress and ABA responses, light signaling, and mRNA splicing, including targets of ABSCISIC ACID INSENSITIVE3 (ABI3) and PHYTOCHROME INTERACTING FACTORs (PIFs). Consistently, expression of the germination inhibitor SOMNUS, induced by ABI3 and PIF1, is upregulated in imbibed seeds of drt111-2 mutants. Together, these results indicate that DRT111 controls sensitivity to ABA during seed development, germination, and stomatal movements, and integrates ABA- and light-regulated pathways to control seed germination.


Assuntos
Ácido Abscísico/farmacologia , Proteínas de Arabidopsis/metabolismo , DNA Ligases/metabolismo , Germinação/fisiologia , Fatores de Processamento de RNA/metabolismo , Sementes/metabolismo , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , DNA Ligases/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/genética , Germinação/genética , Fatores de Processamento de RNA/genética , Sementes/efeitos dos fármacos , Sementes/genética
2.
Biochem Soc Trans ; 48(5): 2117-2126, 2020 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-32869832

RESUMO

Modifications of the cellular proteome pool upon stress allow plants to tolerate environmental changes. Alternative splicing is the most significant mechanism responsible for the production of multiple protein isoforms from a single gene. The spliceosome, a large ribonucleoprotein complex, together with several associated proteins, controls this pre-mRNA processing, adding an additional level of regulation to gene expression. Deep sequencing of transcriptomes revealed that this co- or post-transcriptional mechanism is highly induced by abiotic stress, and concerns vast numbers of stress-related genes. Confirming the importance of splicing in plant stress adaptation, key players of stress signaling have been shown to encode alternative transcripts, whereas mutants lacking splicing factors or associated components show a modified sensitivity and defective responses to abiotic stress. Here, we examine recent literature on alternative splicing and splicing alterations in response to environmental stresses, focusing on its role in stress adaptation and analyzing the future perspectives and directions for research.


Assuntos
Processamento Alternativo , Arabidopsis/genética , Arabidopsis/metabolismo , Transcriptoma , Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/metabolismo , Cromatina/metabolismo , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Sequenciamento de Nucleotídeos em Larga Escala , Homeostase , Mutação , Precursores de RNA/genética , Splicing de RNA , Fatores de Processamento de RNA , RNA Mensageiro/metabolismo , Spliceossomos/metabolismo , Estresse Fisiológico/fisiologia , Temperatura
3.
Plant J ; 94(6): 991-1009, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29602224

RESUMO

Modulation of growth in response to environmental cues is a fundamental aspect of plant adaptation to abiotic stresses. TIP41 (TAP42 INTERACTING PROTEIN OF 41 kDa) is the Arabidopsis thaliana orthologue of proteins isolated in mammals and yeast that participate in the Target-of-Rapamycin (TOR) pathway, which modifies cell growth in response to nutrient status and environmental conditions. Here, we characterized the function of TIP41 in Arabidopsis. Expression analyses showed that TIP41 is constitutively expressed in vascular tissues, and is induced following long-term exposure to NaCl, polyethylene glycol and abscisic acid (ABA), suggesting a role of TIP41 in adaptation to abiotic stress. Visualization of a fusion protein with yellow fluorescent protein indicated that TIP41 is localized in the cytoplasm and the nucleus. Abolished expression of TIP41 results in smaller plants with a lower number of rosette leaves and lateral roots, and an increased sensitivity to treatments with chemical TOR inhibitors, indicating that TOR signalling is affected in these mutants. In addition, tip41 mutants are hypersensitive to ABA at germination and seedling stage, whereas over-expressing plants show higher tolerance. Several TOR- and ABA-responsive genes are differentially expressed in tip41, including iron homeostasis, senescence and ethylene-associated genes. In yeast and mammals, TIP41 provides a link between the TOR pathway and the protein phosphatase 2A (PP2A), which in plants participates in several ABA-mediated mechanisms. Here, we showed an interaction of TIP41 with the catalytic subunit of PP2A. Taken together, these results offer important insights into the function of Arabidopsis TIP41 in the modulation of plant growth and ABA responses.


Assuntos
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/fisiologia , Perfilação da Expressão Gênica , Fosfatidilinositol 3-Quinases/metabolismo , Proteína Fosfatase 2/metabolismo , Alinhamento de Sequência
4.
PLoS Genet ; 12(3): e1005835, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26943172

RESUMO

The phytohormone abscisic acid (ABA) regulates plant growth, development and responses to biotic and abiotic stresses. The core ABA signaling pathway consists of three major components: ABA receptor (PYR1/PYLs), type 2C Protein Phosphatase (PP2C) and SNF1-related protein kinase 2 (SnRK2). Nevertheless, the complexity of ABA signaling remains to be explored. To uncover new components of ABA signal transduction pathways, we performed a yeast two-hybrid screen for SnRK2-interacting proteins. We found that Type One Protein Phosphatase 1 (TOPP1) and its regulatory protein, At Inhibitor-2 (AtI-2), physically interact with SnRK2s and also with PYLs. TOPP1 inhibited the kinase activity of SnRK2.6, and this inhibition could be enhanced by AtI-2. Transactivation assays showed that TOPP1 and AtI-2 negatively regulated the SnRK2.2/3/6-mediated activation of the ABA responsive reporter gene RD29B, supporting a negative role of TOPP1 and AtI-2 in ABA signaling. Consistent with these findings, topp1 and ati-2 mutant plants displayed hypersensitivities to ABA and salt treatments, and transcriptome analysis of TOPP1 and AtI-2 knockout plants revealed an increased expression of multiple ABA-responsive genes in the mutants. Taken together, our results uncover TOPP1 and AtI-2 as negative regulators of ABA signaling.


Assuntos
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/genética , Arabidopsis/genética , Fosfoproteínas Fosfatases/genética , Proteína Fosfatase 1/genética , Ácido Abscísico/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/metabolismo , Proteínas e Peptídeos de Choque Frio/genética , Proteínas e Peptídeos de Choque Frio/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Proteína Fosfatase 1/biossíntese , Proteína Fosfatase 1/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Plântula/genética , Plântula/crescimento & desenvolvimento , Transdução de Sinais
5.
Plant Cell Environ ; 41(5): 1038-1051, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-28386931

RESUMO

Wild potato species are useful sources of allelic diversity and loci lacking in the cultivated potato. In these species, the presence of anthocyanins in leaves has been associated with a greater tolerance to cold stress. However, the molecular mechanisms that allow potatoes to withstand cold exposure remain unclear. Here, we show that the expression of AN2, a MYB transcription factor, is induced by low temperatures in wild, cold-tolerant Solanum commersonii, and not in susceptible Solanum tuberosum varieties. We found that AN2 is a paralog of the potato anthocyanin regulator AN1, showing similar interaction ability with basic helix-loop-helix (bHLH) co-partners. Their sequence diversity resulted in a different capacity to promote accumulation of phenolics when tested in tobacco. Indeed, functional studies demonstrated that AN2 is less able to induce anthocyanins than AN1, but nevertheless it has a strong ability to induce accumulation of hydroxycinnamic acid derivatives. We propose that the duplication of R2R3 MYB genes resulted in subsequent subfunctionalization, where AN1 specialized in anthocyanin production and AN2 conserved the ability to respond to cold stress, inducing mainly the synthesis of hydroxycinnamic acid derivatives. These results contribute to understanding the evolutionary significance of gene duplication on phenolic compound regulation.


Assuntos
Antocianinas/metabolismo , Proteínas de Plantas/metabolismo , Solanum/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Temperatura Baixa , Ácidos Cumáricos/metabolismo , Genes Duplicados , Pressão Osmótica , Folhas de Planta/genética , Folhas de Planta/fisiologia , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Solanum/fisiologia , Estresse Fisiológico , Nicotiana/genética , Nicotiana/fisiologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
6.
BMC Plant Biol ; 17(1): 40, 2017 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-28183294

RESUMO

BACKGROUND: Drought is a major constraint for plant growth and crop productivity that is receiving an increased attention due to global climate changes. Chloroplasts act as environmental sensors, however, only partial information is available on stress-induced mechanisms within plastids. Here, we investigated the chloroplast response to a severe drought treatment and a subsequent recovery cycle in tomato through physiological, metabolite and proteomic analyses. RESULTS: Under stress conditions, tomato plants showed stunted growth, and elevated levels of proline, abscisic acid (ABA) and late embryogenesis abundant gene transcript. Proteomics revealed that water deficit deeply affects chloroplast protein repertoire (31 differentially represented components), mainly involving energy-related functional species. Following the rewatering cycle, physiological parameters and metabolite levels indicated a recovery of tomato plant functions, while proteomics revealed a still ongoing adjustment of the chloroplast protein repertoire, which was even wider than during the drought phase (54 components differentially represented). Changes in gene expression of candidate genes and accumulation of ABA suggested the activation under stress of a specific chloroplast-to-nucleus (retrograde) signaling pathway and interconnection with the ABA-dependent network. CONCLUSIONS: Our results give an original overview on the role of chloroplast as enviromental sensor by both coordinating the expression of nuclear-encoded plastid-localised proteins and mediating plant stress response. Although our data suggest the activation of a specific retrograde signaling pathway and interconnection with ABA signaling network in tomato, the involvement and fine regulation of such pathway need to be further investigated through the development and characterization of ad hoc designed plant mutants.


Assuntos
Cloroplastos/metabolismo , Secas , Proteínas de Plantas/metabolismo , Solanum lycopersicum/fisiologia , Ácido Abscísico/metabolismo , Núcleo Celular/metabolismo , Cloroplastos/fisiologia , Desidratação , Regulação da Expressão Gênica de Plantas , Solanum lycopersicum/metabolismo , Proteínas de Plantas/genética , Prolina/metabolismo
7.
Plant Physiol ; 168(1): 292-306, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25783413

RESUMO

Salt and drought stress severely reduce plant growth and crop productivity worldwide. The identification of genes underlying stress response and tolerance is the subject of intense research in plant biology. Through microarray analyses, we previously identified in potato (Solanum tuberosum) StRGGA, coding for an Arginine Glycine Glycine (RGG) box-containing RNA-binding protein, whose expression was specifically induced in potato cell cultures gradually exposed to osmotic stress. Here, we show that the Arabidopsis (Arabidopsis thaliana) ortholog, AtRGGA, is a functional RNA-binding protein required for a proper response to osmotic stress. AtRGGA gene expression was up-regulated in seedlings after long-term exposure to abscisic acid (ABA) and polyethylene glycol, while treatments with NaCl resulted in AtRGGA down-regulation. AtRGGA promoter analysis showed activity in several tissues, including stomata, the organs controlling transpiration. Fusion of AtRGGA with yellow fluorescent protein indicated that AtRGGA is localized in the cytoplasm and the cytoplasmic perinuclear region. In addition, the rgga knockout mutant was hypersensitive to ABA in root growth and survival tests and to salt stress during germination and at the vegetative stage. AtRGGA-overexpressing plants showed higher tolerance to ABA and salt stress on plates and in soil, accumulating lower levels of proline when exposed to drought stress. Finally, a global analysis of gene expression revealed extensive alterations in the transcriptome under salt stress, including several genes such as ASCORBATE PEROXIDASE2, GLUTATHIONE S-TRANSFERASE TAU9, and several SMALL AUXIN UPREGULATED RNA-like genes showing opposite expression behavior in transgenic and knockout plants. Taken together, our results reveal an important role of AtRGGA in the mechanisms of plant response and adaptation to stress.


Assuntos
Adaptação Fisiológica/efeitos dos fármacos , Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Secas , Proteínas de Ligação a RNA/metabolismo , Cloreto de Sódio/farmacologia , Estresse Fisiológico/efeitos dos fármacos , Ácido Abscísico/farmacologia , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Técnicas de Inativação de Genes , Análise de Sequência com Séries de Oligonucleotídeos , Fenótipo , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas , Ligação Proteica/efeitos dos fármacos , Estrutura Terciária de Proteína , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/genética , Solanum tuberosum/genética , Frações Subcelulares/efeitos dos fármacos , Frações Subcelulares/metabolismo
8.
Proc Natl Acad Sci U S A ; 110(27): 11205-10, 2013 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-23776212

RESUMO

Sucrose nonfermenting 1 (SNF1)-related protein kinase 2s (SnRK2s) are central components of abscisic acid (ABA) signaling pathways. The snrk2.2/2.3/2.6 triple-mutant plants are nearly completely insensitive to ABA, suggesting that most of the molecular actions of ABA are triggered by the SnRK2s-mediated phosphorylation of substrate proteins. Only a few substrate proteins of the SnRK2s are known. To identify additional substrate proteins of the SnRK2s and provide insight into the molecular actions of ABA, we used quantitative phosphoproteomics to compare the global changes in phosphopeptides in WT and snrk2.2/2.3/2.6 triple mutant seedlings in response to ABA treatment. Among the 5,386 unique phosphorylated peptides identified in this study, we found that ABA can increase the phosphorylation of 166 peptides and decrease the phosphorylation of 117 peptides in WT seedlings. In the snrk2.2/2.3/2.6 triple mutant, 84 of the 166 peptides, representing 58 proteins, could not be phosphorylated, or phosphorylation was not increased under ABA treatment. In vitro kinase assays suggest that most of the 58 proteins can serve as substrates of the SnRK2s. The SnRK2 substrates include proteins involved in flowering time regulation, RNA and DNA binding, miRNA and epigenetic regulation, signal transduction, chloroplast function, and many other cellular processes. Consistent with the SnRK2 phosphorylation of flowering time regulators, the snrk2.2/2.3/2.6 triple mutant flowered significantly earlier than WT. These results shed new light on the role of the SnRK2 protein kinases and on the downstream effectors of ABA action, and improve our understanding of plant responses to adverse environments.


Assuntos
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteômica/métodos , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Cloroplastos/genética , Cloroplastos/metabolismo , Epigênese Genética , Flores/crescimento & desenvolvimento , Flores/metabolismo , Genes de Plantas , Mutação , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Reguladores de Crescimento de Plantas/genética , Reguladores de Crescimento de Plantas/metabolismo , Proteínas Serina-Treonina Quinases/genética , Transdução de Sinais/genética , Especificidade por Substrato/genética
9.
Plant J ; 80(3): 527-40, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25159050

RESUMO

AN1 is a regulatory gene that promotes anthocyanin biosynthesis in potato tubers and encodes a R2R3 MYB transcription factor. However, no clear evidence implicates AN1 in anthocyanin production in leaves, where these pigments might enhance environmental stress tolerance. In our study we found that AN1 displays intraspecific sequence variability in both coding/non-coding regions and in the promoter, and that its expression is associated with high anthocyanin content in leaves of commercial potatoes. Expression analysis provided evidence that leaf pigmentation is associated to AN1 expression and that StJAF13 acts as putative AN1 co-regulator for anthocyanin gene expression in leaves of the red leaf variety 'Magenta Love,' while a concomitant expression of StbHLH1 may contribute to anthocyanin accumulation in leaves of 'Double Fun.' Yeast two-hybrid experiments confirmed that AN1 interacts with StbHLH1 and StJAF13 and the latter interaction was verified and localized in the cell nucleus by bimolecular fluorescence complementation assays. In addition, transgenic tobacco (Nicotiana tabacum) overexpressing a combination of either AN1 with StJAF13 or AN1 with StbHLH1 showed deeper purple pigmentation with respect to AN1 alone. This further confirmed AN1/StJAF13 and AN1/StbHLH1 interactions. Our findings demonstrate that the classical loci identified for potato leaf anthocyanin accumulation correspond to AN1 and may represent an important step to expand our knowledge on the molecular mechanisms underlying anthocyanin biosynthesis in different plant tissues.


Assuntos
Antocianinas/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Regulação da Expressão Gênica de Plantas , Solanum tuberosum/genética , Sequência de Aminoácidos , Sequência de Bases , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Flores/genética , Dados de Sequência Molecular , Filogenia , Pigmentação/genética , Folhas de Planta/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas , Plântula/genética , Plântula/metabolismo , Alinhamento de Sequência , Análise de Sequência de DNA , Solanum tuberosum/metabolismo , Nicotiana/genética , Nicotiana/metabolismo
10.
Plant J ; 79(1): 28-43, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24724701

RESUMO

DEAD-box RNA helicases are involved in many aspects of RNA metabolism and in diverse biological processes in plants. Arabidopsis thaliana mutants of two DEAD-box RNA helicases, STRESS RESPONSE SUPPRESSOR1 (STRS1) and STRS2 were previously shown to exhibit tolerance to abiotic stresses and up-regulated stress-responsive gene expression. Here, we show that Arabidopsis STRS-overexpressing lines displayed a less tolerant phenotype and reduced expression of stress-induced genes confirming the STRSs as attenuators of Arabidopsis stress responses. GFP-STRS fusion proteins exhibited localization to the nucleolus, nucleoplasm and chromocenters and exhibited relocalization in response to abscisic acid (ABA) treatment and various stresses. This relocalization was reversed when stress treatments were removed. The STRS proteins displayed mis-localization in specific gene-silencing mutants and exhibited RNA-dependent ATPase and RNA-unwinding activities. In particular, STRS2 showed mis-localization in three out of four mutants of the RNA-directed DNA methylation (RdDM) pathway while STRS1 was mis-localized in the hd2c mutant that is defective in histone deacetylase activity. Furthermore, heterochromatic RdDM target loci displayed reduced DNA methylation and increased expression in the strs mutants. Taken together, our findings suggest that the STRS proteins are involved in epigenetic silencing of gene expression to bring about suppression of the Arabidopsis stress response.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , RNA Helicases DEAD-box/genética , Regulação da Expressão Gênica de Plantas , Ácido Abscísico/farmacologia , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Arabidopsis/citologia , Arabidopsis/efeitos dos fármacos , Arabidopsis/fisiologia , Proteínas de Arabidopsis/metabolismo , Nucléolo Celular/metabolismo , Cromossomos de Plantas/genética , RNA Helicases DEAD-box/metabolismo , Metilação de DNA , Flores/citologia , Flores/efeitos dos fármacos , Flores/genética , Flores/fisiologia , Inativação Gênica , Germinação , Mutação , Fenótipo , Reguladores de Crescimento de Plantas/farmacologia , Folhas de Planta/citologia , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/genética , Folhas de Planta/fisiologia , Raízes de Plantas/citologia , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Raízes de Plantas/fisiologia , Plantas Geneticamente Modificadas , Transporte Proteico , Proteínas Recombinantes de Fusão , Plântula/citologia , Plântula/efeitos dos fármacos , Plântula/genética , Plântula/fisiologia , Sementes/citologia , Sementes/efeitos dos fármacos , Sementes/genética , Sementes/fisiologia , Cloreto de Sódio/farmacologia , Estresse Fisiológico
11.
Methods Mol Biol ; 2832: 67-79, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38869788

RESUMO

Alternative splicing (AS) is an important mechanism contributing to stress-induced regulation of gene expression and proteome diversity. Massive sequencing technologies allow the identification of transcripts generated via stress-responsive AS, potentially important for adaptation to stress conditions. Several bioinformatics tools have been developed to identify differentially expressed alternative splicing events/transcripts from RNA-sequencing results. This chapter describes a detailed protocol for differential alternative splicing analysis using the rMATS tool. In addition, we provide guidelines for validation of the detected splice variants by qRT-PCR based on the obtained output files.


Assuntos
Processamento Alternativo , Biologia Computacional , Estresse Fisiológico , Processamento Alternativo/genética , Estresse Fisiológico/genética , Biologia Computacional/métodos , Software , Humanos , Análise de Sequência de RNA/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Perfilação da Expressão Gênica/métodos
12.
Plant Mol Biol ; 83(4-5): 405-15, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23925404

RESUMO

The accumulation of anthocyanins in plants exposed to salt stress has been largely documented. However, the functional link and regulatory components underlying the biosynthesis of these molecules during exposure to stress are largely unknown. In a screen of second site suppressors of the salt overly sensitive3-1 (sos3-1) mutant, we isolated the anthocyanin-impaired-response-1 (air1) mutant. air1 is unable to accumulate anthocyanins under salt stress, a key phenotype of sos3-1 under high NaCl levels (120 mM). The air1 mutant showed a defect in anthocyanin production in response to salt stress but not to other stresses such as high light, low phosphorous, high temperature or drought stress. This specificity indicated that air1 mutation did not affect anthocyanin biosynthesis but rather its regulation in response to salt stress. Analysis of this mutant revealed a T-DNA insertion at the first exon of an Arabidopsis thaliana gene encoding for a basic region-leucine zipper transcription factor. air1 mutants displayed higher survival rates compared to wild-type in oxidative stress conditions, and presented an altered expression of anthocyanin biosynthetic genes such as F3H, F3'H and LDOX in salt stress conditions. The results presented here indicate that AIR1 is involved in the regulation of various steps of the flavonoid and anthocyanin accumulation pathways and is itself regulated by the salt-stress response signalling machinery. The discovery and characterization of AIR1 opens avenues to dissect the connections between abiotic stress and accumulation of antioxidants in the form of flavonoids and anthocyanins.


Assuntos
Antocianinas/metabolismo , Proteínas de Arabidopsis/genética , Arabidopsis/genética , Fatores de Transcrição de Zíper de Leucina Básica/genética , Regulação da Expressão Gênica de Plantas , Antocianinas/análise , Arabidopsis/efeitos dos fármacos , Arabidopsis/fisiologia , Arabidopsis/efeitos da radiação , Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Flavonoides/metabolismo , Luz , Mutagênese Insercional , Fenótipo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Raízes de Plantas/fisiologia , Raízes de Plantas/efeitos da radiação , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/genética , Brotos de Planta/fisiologia , Brotos de Planta/efeitos da radiação , Reação em Cadeia da Polimerase em Tempo Real , Cloreto de Sódio/farmacologia , Estresse Fisiológico
13.
Plant Physiol Biochem ; 201: 107877, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37473675

RESUMO

'Corbarino' (COR) and 'Lucariello' (LUC) belong to the family of Mediterranean long shelf-life tomato landraces, producing high quality fruits under low water input cultivation regime in their traditional cultivation area. Understanding the morpho-physiological and molecular details of the peculiar drought stress tolerance of these two genotypes may be key to their valorization as breeding material. RNA sequencing of leaf samples of COR and LUC subjected to drought stress by water withholding in a semi-controlled greenhouse identified 3089 and 2135 differentially expressed genes respectively. These included COR- and LUC-specific annotated genes, as well as genes containing single nucleotide polymorphisms as compared to reference genome. Enriched Gene Ontology categories showed that categories such as response to water, oxidoreductase activity, nucleotide salvation and lipid biosynthesis-related processes were enriched among up-regulated DEGs. By contrast, growth and photosynthesis related genes were down-regulated after drought stress, consistent with leaf gas exchange and biomass accumulation measurements. Genes encoding cell wall degrading enzymes of the pectinase family were also down-regulated in drought stress conditions and upregulated in rewatering, indicating that cell wall composition/hardness is important for drought stress responses. Globally our results contribute to understanding the transcriptomic and physiological responses of representative tomato genotypes from Southern Italy, highlighting a promising set of genes to be investigated to improve tomato tolerance to drought.


Assuntos
Solanum lycopersicum , Água , Água/metabolismo , Transcriptoma/genética , Solanum lycopersicum/genética , Melhoramento Vegetal , Perfilação da Expressão Gênica , Secas , Estresse Fisiológico/genética , Regulação da Expressão Gênica de Plantas
14.
Front Plant Sci ; 13: 974048, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36507383

RESUMO

Tomato is a horticultural crop of high economic and nutritional value. Suboptimal environmental conditions, such as limited water and nutrient availability, cause severe yield reductions. Thus, selection of genotypes requiring lower inputs is a goal for the tomato breeding sector. We screened 10 tomato varieties exposed to water deficit, low nitrate or a combination of both. Biometric, physiological and molecular analyses revealed different stress responses among genotypes, identifying T270 as severely affected, and T250 as tolerant to the stresses applied. Investigation of transcriptome changes caused by combined stress in roots and leaves of these two genotypes yielded a low number of differentially expressed genes (DEGs) in T250 compared to T270, suggesting that T250 tailors changes in gene expression to efficiently respond to combined stress. By contrast, the susceptible tomato activated approximately one thousand and two thousand genes in leaves and roots respectively, indicating a more generalized stress response in this genotype. In particular, developmental and stress-related genes were differentially expressed, such as hormone responsive factors and transcription factors. Analysis of differential alternative splicing (DAS) events showed that combined stress greatly affects the splicing landscape in both genotypes, highlighting the important role of AS in stress response mechanisms. In particular, several stress and growth-related genes as well as transcription and splicing factors were differentially spliced in both tissues. Taken together, these results reveal important insights into the transcriptional and post-transcriptional mechanisms regulating tomato adaptation to growth under reduced water and nitrogen inputs.

15.
Hortic Res ; 9: uhac112, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35795386

RESUMO

The Mediterranean basin countries are considered secondary centres of tomato diversification. However, information on phenotypic and allelic variation of local tomato materials is still limited. Here we report on the evaluation of the largest traditional tomato collection, which includes 1499 accessions from Southern Europe. Analyses of 70 traits revealed a broad range of phenotypic variability with different distributions among countries, with the culinary end use within each country being the main driver of tomato diversification. Furthermore, eight main tomato types (phenoclusters) were defined by integrating phenotypic data, country of origin, and end use. Genome-wide association study (GWAS) meta-analyses identified associations in 211 loci, 159 of which were novel. The multidimensional integration of phenoclusters and the GWAS meta-analysis identified the molecular signatures for each traditional tomato type and indicated that signatures originated from differential combinations of loci, which in some cases converged in the same tomato phenotype. Our results provide a roadmap for studying and exploiting this untapped tomato diversity.

16.
J Exp Bot ; 61(12): 3199-210, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20522527

RESUMO

The phytohormone abscisic acid (ABA) plays a central role in plant development and in plant adaptation to both biotic and abiotic stressors. In recent years, knowledge of ABA metabolism and signal transduction has advanced rapidly to provide detailed glimpses of the hormone's activities at the molecular level. Despite this progress, many gaps in understanding have remained, particularly at the early stages of ABA perception by the plant cell. The search for an ABA receptor protein has produced multiple candidates, including GCR2, GTG1, and GTG2, and CHLH. In addition to these candidates, in 2009 several research groups converged on a novel family of Arabidopsis proteins that bind ABA, and thereby interact directly with a class of protein phosphatases that are well known as critical players in ABA signal transduction. The PYR/PYL/RCAR receptor family is homologous to the Bet v 1-fold and START domain proteins. It consists of 14 members, nearly all of which appear capable of participating in an ABA receptor-signal complex that responds to the hormone by activating the transcription of ABA-responsive genes. Evidence is provided here that PYR/PYL/RCAR receptors can also drive the phosphorylation of the slow anion channel SLAC1 to provide a fast and timely response to the ABA signal. Crystallographic studies have vividly shown the mechanics of ABA binding to PYR/PYL/RCAR receptors, presenting a model that bears some resemblance to the binding of gibberellins to GID1 receptors. Since this ABA receptor family is highly conserved in crop species, its discovery is likely to usher a new wave of progress in the elucidation and manipulation of plant stress responses in agricultural settings.


Assuntos
Ácido Abscísico/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Receptores de Superfície Celular/metabolismo , Transdução de Sinais , Sequência de Aminoácidos , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Produtos Agrícolas/genética , Produtos Agrícolas/metabolismo , Dados de Sequência Molecular , Fosforilação , Alinhamento de Sequência
17.
Plant Sci ; 298: 110597, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32771154

RESUMO

Anthocyanins are antioxidant pigments widely used in drugs and food preparations. Flesh-coloured tubers of the cultivated potato Solanum tuberosum are important sources of different anthocyanins. Due to the high degree of decoration achieved by acylation, anthocyanins from potato are very stable and suitable for the food processing industry. The use of cell culture allows to extract anthocyanins on-demand, avoiding seasonality and consequences associated with land-based-tuber production. However, a well-known limit of cell culture is the metabolic instability and loss of anthocyanin production during successive subcultures. To get a general picture of mechanisms responsible for this instability, we explored both genetic and epigenetic regulation that may affect anthocyanin production in cell culture. We selected two clonally related populations of anthocyanin-producing (purple) and non-producing (white) potato cells. Through targeted molecular investigations, we identified and functionally characterized an R3-MYB, here named StMYBATV. This transcription factor can interact with bHLHs belonging to the MBW (R2R3-MYB, bHLH and WD40) anthocyanin activator complex and, potentially, may interfere with its formation. Genome methylation analysis revealed that, for several genomic loci, anthocyanin-producing cells were more methylated than clonally related white cells. In particular, we localized some methylation events in ribosomal protein-coding genes. Overall, our study explores novel molecular aspects associated with loss of anthocyanins in cell culture systems.


Assuntos
Antocianinas/biossíntese , Técnicas de Cultura de Células , Epigênese Genética , Células Vegetais/metabolismo , Tubérculos/metabolismo , Solanum tuberosum/metabolismo , Antocianinas/genética , Epigênese Genética/fisiologia , Tubérculos/citologia , Solanum tuberosum/citologia , Solanum tuberosum/genética
18.
Front Plant Sci ; 10: 304, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30941154

RESUMO

Abscisic acid (ABA) plays an important role in various aspects of plant growth and development, including adaptation to stresses, fruit development and ripening. In seeds, ABA participates through its core signaling components in dormancy instauration, longevity determination, and inhibition of germination in unfavorable environmental conditions such as high soil salinity. Here, we show that seed germination in pepper was delayed but only marginally reduced by ABA or NaCl with respect to control treatments. Through a similarity search, pepper orthologs of ABA core signaling components PYL (PYRABACTIN RESISTANCE1-LIKE), PP2C (PROTEIN PHOSPHATASE2C), and SnRK2 (SUCROSE NONFERMENTING1 (SNF1)-RELATED PROTEIN KINASE2) genes were identified. Gene expression analyses of selected members showed a low abundance of PYL and SnRK2 transcripts in dry seeds compared to other tissues, and an up-regulation at high concentrations of ABA and/or NaCl for both positive and negative regulators of ABA signaling. As expected, in hydroponically-grown seedlings exposed to NaCl, only PP2C encoding genes were up-regulated. Yeast two hybrid assays performed among putative pepper core components and with Arabidopsis thaliana orthologs confirmed the ability of the identified proteins to function in ABA signaling cascade, with the exception of a CaABI isoform cloned from seeds. BiFC assay in planta confirmed some of the interactions obtained in yeast. Altogether, our results indicate that a low expression of perception and signaling components in pepper seeds might contribute to explain the observed high percentages of seed germination in the presence of ABA. These results might have direct implications on the improvement of seed longevity and vigor, a bottleneck in pepper breeding.

19.
Plant Signal Behav ; 13(12): e1537698, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30458658

RESUMO

Environmental conditions inform the rate of plant growth and development. The target of rapamycin (TOR) signalling pathway is a central regulator of plant growth in response to nutrients and energy, while abscisic acid (ABA) is a main mediator of abiotic stress responses. We recently characterized Arabidopsis TIP41, a predicted TOR pathway component involved in the ABA-mediated response to abiotic stress. Here, we report the ABA sensitivity of tip41 mutants, supporting the relation between TIP41 and the hormone pathway. The analysis of predicted TIP41 functional network identified several protein phosphatases. In particular, candidate protein interactors included catalytic subunits of type 2A protein phosphatases and protein phosphatases 6, which regulate different developmental processes and responses to environmental stimuli. These results provide important information on the role of TIP41 in the cross talk between TOR and ABA pathways.

20.
DNA Res ; 25(2): 149-160, 2018 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-29149280

RESUMO

Tomato is a high value crop and the primary model for fleshy fruit development and ripening. Breeding priorities include increased fruit quality, shelf life and tolerance to stresses. To contribute towards this goal, we re-sequenced the genomes of Corbarino (COR) and Lucariello (LUC) landraces, which both possess the traits of plant adaptation to water deficit, prolonged fruit shelf-life and good fruit quality. Through the newly developed pipeline Reconstructor, we generated the genome sequences of COR and LUC using datasets of 65.8 M and 56.4 M of 30-150 bp paired-end reads, respectively. New contigs including reads that could not be mapped to the tomato reference genome were assembled, and a total of 43, 054 and 44, 579 gene loci were annotated in COR and LUC. Both genomes showed novel regions with similarity to Solanum pimpinellifolium and Solanum pennellii. In addition to small deletions and insertions, 2, 000 and 1, 700 single nucleotide polymorphisms (SNPs) could exert potentially disruptive effects on 1, 371 and 1, 201 genes in COR and LUC, respectively. A detailed survey of the SNPs occurring in fruit quality, shelf life and stress tolerance related-genes identified several candidates of potential relevance. Variations in ethylene response components may concur in determining peculiar phenotypes of COR and LUC.


Assuntos
Frutas/genética , Genoma de Planta , Polimorfismo Genético , Solanum lycopersicum/genética , Estresse Fisiológico/genética , Sequenciamento Completo do Genoma , Sequência de Bases , Genes de Plantas , Genômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA