Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
BMC Biol ; 21(1): 114, 2023 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-37208758

RESUMO

This paper is a response to Polinski, M. P. et al. Innate antiviral defense demonstrates high energetic efficiency in a bony fish. BMC Biology 19, 138 (2021). https://doi.org/10.1186/s12915-021-01069-2.


Assuntos
Doenças dos Peixes , Orthoreovirus , Infecções por Reoviridae , Animais , Infecções por Reoviridae/veterinária , Orthoreovirus/fisiologia , Salmão
2.
Ecol Appl ; 31(1): e02226, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32896013

RESUMO

Many industries are required to monitor themselves in meeting regulatory policies intended to protect the environment. Self-reporting of environmental performance can place the cost of monitoring on companies rather than taxpayers, but there are obvious risks of bias, often addressed through external audits or inspections. Surprisingly, there have been relatively few empirical analyses of bias in industry self-reported data. Here, we test for bias in reporting of environmental compliance data using a unique data set from Canadian salmon farms, where companies monitor the number of parasitic sea lice on fish in open sea pens, in order to minimize impacts on wild fish in surrounding waters. We fit a hierarchical population-dynamics model to these sea-louse count data using a Bayesian approach. We found that the industry's monthly counts of two sea-louse species, Caligus clemensi and Lepeophtheirus salmonis, increased by a factor of 1.95 (95% credible interval: 1.57, 2.42) and 1.18 (1.06, 1.31), respectively, in months when counts were audited by the federal fisheries department. Consequently, industry sea-louse counts are less likely to trigger costly but mandated delousing treatments intended to avoid sea-louse epidemics in wild juvenile salmon. These results highlight the potential for combining external audits of industry self-reported data with analyses of their reporting to maintain compliance with regulations, achieve intended conservation goals, and build public confidence in the process.


Assuntos
Copépodes , Doenças dos Peixes , Parasitos , Animais , Teorema de Bayes , Canadá , Doenças dos Peixes/epidemiologia , Humanos , Oceanos e Mares , Salmão , Autorrelato
3.
J Anim Ecol ; 88(3): 392-404, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30618046

RESUMO

Resource waves-spatial variation in resource phenology that extends feeding opportunities for mobile consumers-can affect the behaviour and productivity of recipient populations. Interspecific diversity among Pacific salmon species (Oncorhynchus spp.) creates staggered spawning events across space and time, thereby prolonging availability to terrestrial wildlife. We sought to understand how such variation might influence consumption by terrestrial predators compared with resource abundance and intra- and interspecific competition. Using stable isotope analysis, we investigated how the proportion of salmon in the annual diet of male black bears (Ursus americanus; n = 405) varies with species diversity and density of spawning salmon biomass, while also accounting for competition with sympatric black and grizzly bears (U. arctos horribilis), in coastal British Columbia, Canada. We found that the proportion of salmon in the annual diet of black bears was ≈40% higher in the absence of grizzly bears, but detected little effect of relative black bear density and salmon biomass density. Rather, salmon diversity had the largest positive effect on consumption. On average, increasing diversity from one salmon species to ~four (with equal biomass contributions) approximately triples the proportion of salmon in diet. Given the importance of salmon to bear life histories, this work provides early empirical support for how resource waves may increase the productivity of consumers at population and landscape scales. Accordingly, terrestrial wildlife management might consider maintaining not only salmon abundance but also diversity.


Assuntos
Salmonidae , Ursidae , Animais , Animais Selvagens , Colúmbia Britânica , Masculino , Salmão
4.
Am Nat ; 192(2): 188-203, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30016169

RESUMO

For highly social species, population dynamics depend on hierarchical demography that links local processes, group dynamics, and population growth. Here, we describe a stage-structured matrix model of hierarchical demography, which provides a framework for understanding social influences on population change. Our approach accounts for dispersal and affords insight into population dynamics at multiple scales. The method has close parallels to integral projection models but focuses on a discrete characteristic (group size). Using detailed long-term records for meerkats (Suricata suricatta), we apply our model to explore patterns of local density dependence and implications of group size for group and population growth. Taking into account dispersers, the model predicts a per capita growth rate for social groups that declines with group size. It predicts that larger social groups should produce a greater number of new breeding groups; thus, dominant breeding females (responsible for most reproduction) are likely to be more productive in larger groups. Considering the potential for future population growth, larger groups have the highest reproductive value, but per capita reproductive value is maximized for individuals in smaller groups. Across a plausible range of dispersal conditions, meerkats' long-run population growth rate is maximized when individuals form groups of intermediate size.


Assuntos
Herpestidae , Modelos Biológicos , Comportamento Sexual Animal , Comportamento Social , Migração Animal , Animais , Feminino , Masculino , Dinâmica Populacional
5.
J Fish Biol ; 93(2): 263-271, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29956312

RESUMO

We conducted a manipulative field experiment to determine whether the leaping behaviour of wild juvenile sockeye salmon Oncorhynchus nerka dislodges ectoparasitic sea lice Caligus clemensi and Lepeophtheirus salmonis by comparing sea-lice abundances between O. nerka juveniles prevented from leaping and juveniles allowed to leap at a natural frequency. Juvenile O. nerka allowed to leap had consistently fewer sea lice after the experiment than fish that were prevented from leaping. Combined with past research, these results imply potential costs due to parasitism and indicate that the leaping behaviour of juvenile O. nerka does, in fact, dislodge sea lice.


Assuntos
Comportamento Animal , Copépodes , Salmão/parasitologia , Animais
6.
Ecology ; 97(7): 1887, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27859168

RESUMO

The global expansion of aquaculture has changed the structure of fish populations in coastal environments, with implications for disease dynamics. In Pacific Canada, farmed salmon act as reservoir hosts for parasites and pathogens, including sea lice (Lepeophtheirus salmonis and Caligus clemensi) that can transmit to migrating wild salmon. Assessing the impact of salmon farms on wild salmon requires regular monitoring of sea-louse infections on both farmed and wild fish. Since 2001, we have collected juvenile pink (Oncorhynchus gorbuscha) and chum (O. keta) salmon annually at three sites in the Broughton Archipelago in British Columbia, Canada, during the annual juvenile salmon migration from fresh water to the open ocean. From sampled fish, we recorded counts of parasitic copepodid-, chalimus-, and motile-stage sea lice. We report louse abundances as well as supplementary observations of fish size, development, and health.


Assuntos
Copépodes/fisiologia , Monitoramento Ambiental , Salmão/parasitologia , Animais , Colúmbia Britânica , Doenças dos Peixes , Parasitos
7.
Am Nat ; 186(3): 362-75, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26655354

RESUMO

Some of the most fundamental quantities in population ecology describe the growth and spread of populations. Population dynamics are often characterized by the annual rate of increase, λ, or the generational rate of increase, R0. Analyses involving R0 have deepened our understanding of disease dynamics and life-history complexities beyond that afforded by analysis of annual growth alone. While range expansion is quantified by the annual spreading speed, a spatial analog of λ, an R0-like expression for the rate of spread is missing. Using integrodifference models, we derive the appropriate generational spreading speed for populations with complex (stage-structured) life histories. The resulting measure, relevant to locations near the expanding edge of a (re)colonizing population, incorporates both local population growth and explicit spatial dispersal rather than solely growth across a population, as is the case for R0. The calculations for generational spreading speed are often simpler than those for annual spreading speed, and analytic or partial analytic solutions can yield insight into the processes that facilitate or slow a population's spatial spread. We analyze the spatial dynamics of green crabs, sea otters, and teasel as examples to demonstrate the flexibility of our methods and the intuitive insights that they afford.


Assuntos
Distribuição Animal , Demografia , Animais , Braquiúros , Dipsacaceae , Modelos Teóricos , Lontras , Dinâmica Populacional , Crescimento Demográfico
8.
J Anim Ecol ; 84(1): 260-71, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24995457

RESUMO

Multiple approaches exist to model patterns of space use across species, among them resource selection analysis, statistical home-range modelling and mechanistic movement modelling. Mechanistic home-range models combine the benefits of these approaches, describing emergent territorial patterns based on fine-scale individual- or group-movement rules and incorporating interactions with neighbours and the environment. These models have not, to date, been extended to dynamic contexts. Using mechanistic home-range models, we explore meerkat (Suricata suricatta) territorial patterns, considering scent marking, direct group interactions and habitat selection. We also extend the models to accommodate dynamic aspects of meerkat territoriality (territory development and territory shift). We fit models, representing multiple working hypotheses, to data from a long-term meerkat study in South Africa, and we compare models using Akaike's and Bayesian Information Criteria. Our results identify important features of meerkat territorial patterns. Notably, larger groups do not seem to control larger territories, and groups apparently prefer dune edges along a dry river bed. Our model extensions capture instances in which 1) a newly formed group interacts more strongly with its parent groups over time and 2) a group moves its territory core out of aversive habitat. This extends our mechanistic modelling framework in previously unexplored directions.


Assuntos
Ecossistema , Herpestidae/fisiologia , Comportamento de Retorno ao Território Vital , Modelos Biológicos , Territorialidade , Distribuição Animal , Animais , Feminino , Masculino , Dinâmica Populacional , África do Sul
9.
Am Nat ; 183(6): 847-55, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24823827

RESUMO

Some authors have suggested that prey species stand to benefit most by defending as early as possible during predator-prey encounters, but species in nature employ antipredator defenses at various stages of interactions with their predators. Whether it is generally most advantageous to defend early or late during such encounters is an open theoretical question. We model conditions under which a prey species might evolve early or late defenses in response to predation. Adapting a two-prey, one-predator Rosenzweig-MacArthur system of differential equations, we analyze the effects of modified antipredator defenses (and their associated costs) on the ability of a new prey type to invade the one-prey, one-predator limiting system at equilibrium. We show that the outcome, in terms of invasion potential, is crucially dependent on the ratio of the prey's proportional population growth rate to the cost of predator encounters.


Assuntos
Comportamento Animal/fisiologia , Evolução Biológica , Espécies Introduzidas , Dinâmica Populacional , Comportamento Predatório , Animais , Modelos Biológicos
10.
J Anim Ecol ; 83(2): 332-42, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24102215

RESUMO

Resource availability plays a key role in driving variation in somatic growth and body condition, and the factors determining access to resources vary considerably across life stages. Parents and carers may exert important influences in early life, when individuals are nutritionally dependent, with abiotic environmental effects having stronger influences later in development as individuals forage independently. Most studies have measured specific factors influencing growth across development or have compared relative influences of different factors within specific life stages. Such studies may not capture whether early-life factors continue to have delayed effects at later stages, or whether social factors change when individuals become nutritionally independent and adults become competitors for, rather than providers of, food. Here, we examined variation in the influence of the abiotic, social and maternal environment on growth across life stages in a wild population of cooperatively breeding meerkats. Cooperatively breeding vertebrates are ideal for investigating environmental influences on growth. In addition to experiencing highly variable abiotic conditions, cooperative breeders are typified by heterogeneity both among breeders, with mothers varying in age and social status, and in the number of carers present. Recent rainfall had a consistently marked effect on growth across life stages, yet other seasonal terms only influenced growth during stages when individuals were growing fastest. Group size and maternal dominance status had positive effects on growth during the period of nutritional dependence on carers, but did not influence mass at emergence (at 1 month) or growth at independent stages (>4 months). Pups born to older mothers were lighter at 1 month of age and subsequently grew faster as subadults. Males grew faster than females during the juvenile and subadult stage only. Our findings demonstrate the complex ways in which the external environment influences development in a cooperative mammal. Individuals are most sensitive to social and maternal factors during the period of nutritional dependence on carers, whereas direct environmental effects are relatively more important later in development. Understanding the way in which environmental sensitivity varies across life stages is likely to be an important consideration in predicting trait responses to environmental change.


Assuntos
Meio Ambiente , Herpestidae/fisiologia , Comportamento Materno , Comportamento Social , Animais , Peso Corporal , Comportamento Cooperativo , Feminino , Herpestidae/crescimento & desenvolvimento , Masculino , África do Sul
11.
J Anim Ecol ; 83(6): 1357-66, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24749732

RESUMO

Social and environmental factors influence key life-history processes and population dynamics by affecting fitness-related phenotypic traits such as body mass. The role of body mass is particularly pronounced in cooperative breeders due to variation in social status and consequent variation in access to resources. Investigating the mechanisms underlying variation in body mass and its demographic consequences can help elucidate how social and environmental factors affect the dynamics of cooperatively breeding populations. In this study, we present an analysis of the effect of individual variation in body mass on the temporal dynamics of group size and structure of a cooperatively breeding mongoose, the Kalahari meerkat, Suricata suricatta. First, we investigate how body mass interacts with social (dominance status and number of helpers) and environmental (rainfall and season) factors to influence key life-history processes (survival, growth, emigration and reproduction) in female meerkats. Next, using an individual-based population model, we show that the models explicitly including individual variation in body mass predict group dynamics better than those ignoring this morphological trait. Body mass influences group dynamics mainly through its effects on helper emigration and dominant reproduction. Rainfall has a trait-mediated, destabilizing effect on group dynamics, whereas the number of helpers has a direct and stabilizing effect. Counteracting effects of number of helpers on different demographic rates, despite generating temporal fluctuations, stabilizes group dynamics in the long term. Our study demonstrates that social and environmental factors interact to produce individual variation in body mass and accounting for this variation helps to explain group dynamics in this cooperatively breeding population.


Assuntos
Peso Corporal , Herpestidae/fisiologia , Comportamento Social , Animais , Feminino , Masculino , Modelos Biológicos , Dinâmica Populacional , Reprodução , Estações do Ano , África do Sul
12.
Sci Rep ; 13(1): 5473, 2023 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-37016008

RESUMO

Although infectious agents can act as strong population regulators, knowledge of their spatial distributions in wild Pacific salmon is limited, especially in the marine environment. Characterizing pathogen distributions during early marine residence, a period considered a survival bottleneck for Pacific salmon, may reveal where salmon populations are exposed to potentially detrimental pathogens. Using high-throughput qPCR, we determined the prevalence of 56 infectious agents in 5719 Chinook, 2032 Coho and 4062 Sockeye salmon, sampled between 2008 and 2018, in their first year of marine residence along coastal Western Canada. We identified high prevalence clusters, which often shifted geographically with season, for most of the 41 detected agents. A high density of infection clusters was found in the Salish Sea along the east coast of Vancouver Island, an important migration route and residence area for many salmon populations, some experiencing chronically poor marine survival. Maps for each infectious agent taxa showing clusters across all host species are provided. Our novel documentation of salmon pathogen distributions in the marine environment contributes to the ecological knowledge regarding some lesser known pathogens, identifies salmon populations potentially impacted by specific pathogens, and pinpoints priority locations for future research and remediation.


Assuntos
Oncorhynchus , Animais , Colúmbia Britânica/epidemiologia , Salmão
13.
Mol Ecol ; 21(11): 2788-804, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22497583

RESUMO

Mating between relatives often results in negative fitness consequences or inbreeding depression. However, the expression of inbreeding in populations of wild cooperative mammals and the effects of environmental, maternal and social factors on inbreeding depression in these systems are currently not well understood. This study uses pedigree-based inbreeding coefficients from a long-term study of meerkats (Suricata suricatta) in South Africa to reveal that 44% of the population have detectably non-zero (F > 0) inbreeding coefficients. 15% of these inbred individuals were the result of moderate inbreeding (F ≥ 0.125), although such inbreeding events almost solely occurred when mating individuals had no prior experience of each other. Inbreeding depression was evident for a range of traits: pup mass at emergence from the natal burrow, hind-foot length, growth until independence and juvenile survival. However, we found no evidence of significant inbreeding depression for skull and forearm length or for pup survival. This research provides a rare investigation into inbreeding in a cooperative mammal, revealing high levels of inbreeding, considerable negative consequences and complex interactions with the social environment.


Assuntos
Carnívoros/genética , Endogamia , Animais , Animais Recém-Nascidos/crescimento & desenvolvimento , Comportamento Animal , Peso ao Nascer , Carnívoros/fisiologia , Feminino , Membro Posterior/anatomia & histologia , Herança Multifatorial , Reprodução , Crânio/anatomia & histologia , África do Sul , Sobrevida
14.
J Anim Ecol ; 81(3): 628-39, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22117843

RESUMO

1. For social species, the link between individual behaviour and population dynamics is mediated by group-level demography. 2. Populations of obligate cooperative breeders are structured into social groups, which may be subject to inverse density dependence (Allee effects) that result from a dependence on conspecific helpers, but evidence for population-wide Allee effects is rare. 3. We use field data from a long-term study of cooperative meerkats (Suricata suricatta; Schreber, 1776) - a species for which local Allee effects are not reflected in population-level dynamics - to empirically model interannual group dynamics. 4. Using phenomenological population models, modified to incorporate environmental conditions and potential Allee effects, we first investigate overall patterns of group dynamics and find support only for conventional density dependence that increases after years of low rainfall. 5. To explain the observed patterns, we examine specific demographic rates and assess their contributions to overall group dynamics. Although per-capita meerkat mortality is subject to a component Allee effect, it contributes relatively little to observed variation in group dynamics, and other (conventionally density dependent) demographic rates - especially emigration - govern group dynamics. 6. Our findings highlight the need to consider demographic processes and density dependence in subpopulations before drawing conclusions about how behaviour affects population processes in socially complex systems.


Assuntos
Comportamento Animal/fisiologia , Herpestidae/fisiologia , Comportamento Social , Animais , Ecossistema , Feminino , Masculino , Modelos Biológicos , Densidade Demográfica
15.
Oecologia ; 169(1): 143-53, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22108854

RESUMO

Lifetime records of changes in individual size or mass in wild animals are scarce and, as such, few studies have attempted to model variation in these traits across the lifespan or to assess the factors that affect them. However, quantifying lifetime growth is essential for understanding trade-offs between growth and other life history parameters, such as reproductive performance or survival. Here, we used model selection based on information theory to measure changes in body mass over the lifespan of wild meerkats, and compared the relative fits of several standard growth models (monomolecular, von Bertalanffy, Gompertz, logistic and Richards). We found that meerkats exhibit monomolecular growth, with the best model incorporating separate growth rates before and after nutritional independence, as well as effects of season and total rainfall in the previous nine months. Our study demonstrates how simple growth curves may be improved by considering life history and environmental factors, which may be particularly relevant when quantifying growth patterns in wild populations.


Assuntos
Meio Ambiente , Herpestidae/crescimento & desenvolvimento , Animais , Peso Corporal , Feminino , Herpestidae/anatomia & histologia , Masculino , Modelos Biológicos , Estações do Ano
16.
Sci Rep ; 12(1): 4775, 2022 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-35347162

RESUMO

Parasitic salmon lice (Lepeophtheirus salmonis) threaten the economic and ecological sustainability of salmon farming, and their evolved resistance to treatment with emamectin benzoate (EMB) has been a major problem for salmon farming in the Atlantic Ocean. In contrast, the Pacific Ocean, where wild salmon are far more abundant, has not seen widespread evolution of EMB-resistant lice. Here, we use EMB bioassays and counts of lice on farms from the Broughton Archipelago, Canada-a core region of salmon farming in the Pacific-to show that EMB sensitivity has dramatically decreased since 2010, concurrent with marked decrease in the field efficacy of EMB treatments. Notably, these bioassay data were not made available through public reporting by industry or by the federal regulator, but rather through Indigenous-led agreements that created a legal obligation for salmon-farming companies to provide data to First Nations. Our results suggest that salmon lice in the Pacific Ocean have recently evolved substantial resistance to EMB, and that salmon-louse outbreaks on Pacific farms will therefore be more difficult to control in the coming years.


Assuntos
Copépodes , Parasitos , Animais , Antiparasitários/farmacologia , Antiparasitários/uso terapêutico , Oceano Pacífico , Salmão/parasitologia
17.
Sci Rep ; 11(1): 3466, 2021 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-33568681

RESUMO

Rapid expansion of salmon aquaculture has resulted in high-density populations that host diverse infectious agents, for which surveillance and monitoring are critical to disease management. Screening can reveal infection diversity from which disease arises, differential patterns of infection in live and dead fish that are difficult to collect in wild populations, and potential risks associated with agent transmission between wild and farmed hosts. We report results from a multi-year infectious-agent screening program of farmed salmon in British Columbia, Canada, using quantitative PCR to assess presence and load of 58 infective agents (viruses, bacteria, and eukaryotes) in 2931 Atlantic salmon (Salmo salar). Our analysis reveals temporal trends, agent correlations within hosts, and agent-associated mortality signatures. Multiple agents, most notably Tenacibaculum maritimum, were elevated in dead and dying salmon. We also report detections of agents only recently shown to infect farmed salmon in BC (Atlantic salmon calicivirus, Cutthroat trout virus-2), detection in freshwater hatcheries of two marine agents (Kudoa thyrsites and Tenacibaculum maritimum), and detection in the ocean of a freshwater agent (Flavobacterium psychrophilum). Our results provide information for farm managers, regulators, and conservationists, and enable further work to explore patterns of multi-agent infection and farm/wild transmission risk.


Assuntos
Doenças dos Peixes/epidemiologia , Pesqueiros , Infecções/veterinária , Salmo salar , Animais , Infecções Bacterianas/epidemiologia , Infecções Bacterianas/veterinária , Colúmbia Britânica , Infecções/epidemiologia , Oceano Pacífico/epidemiologia , Prevalência , Viroses/epidemiologia , Viroses/veterinária
18.
Sci Adv ; 7(22)2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-34039598

RESUMO

Global expansion of aquaculture and agriculture facilitates disease emergence and catalyzes transmission to sympatric wildlife populations. The health of wild salmon stocks critically concerns Indigenous peoples, commercial and recreational fishers, and the general public. Despite potential impact of viral pathogens such as Piscine orthoreovirus-1 (PRV-1) on endangered wild salmon populations, their epidemiology in wild fish populations remains obscure, as does the role of aquaculture in global and local spread. Our phylogeographic analyses of PRV-1 suggest that development of Atlantic salmon aquaculture facilitated spread from Europe to the North and South East Pacific. Phylogenetic analysis and reverse transcription polymerase chain reaction surveillance further illuminate the circumstances of emergence of PRV-1 in the North East Pacific and provide strong evidence for Atlantic salmon aquaculture as a source of infection in wild Pacific salmon. PRV-1 is now an important infectious agent in critically endangered wild Pacific salmon populations, fueled by aquacultural transmission.


Assuntos
Doenças dos Peixes , Infecções por Reoviridae , Salmo salar , Animais , Aquicultura , Doenças dos Peixes/epidemiologia , Filogenia , Infecções por Reoviridae/epidemiologia
19.
Evol Appl ; 13(10): 2521-2535, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33294006

RESUMO

Migration can reduce parasite burdens in migratory hosts, but it connects populations and can drive disease dynamics in domestic species. Farmed salmon are infested by sea louse parasites, often carried by migratory wild salmonids, resulting in a costly problem for industry and risk to wild populations when farms amplify louse numbers. Chemical treatment can control lice, but resistance has evolved in many salmon-farming regions. Resistance has, however, been slow to evolve in the north-east Pacific Ocean, where large wild-salmon populations harbour large sea louse populations. Using a mathematical model of host-macroparasite dynamics, we explored the roles of domestic, wild oceanic and connective migratory host populations in maintaining treatment susceptibility in associated sea lice. Our results show that a large wild salmon population, unexposed to direct infestation by lice from farms; high levels of on-farm treatment; and a healthy migratory host population are all critical to slowing or stopping the evolution of treatment resistance. Our results reproduce the "high-dose/refuge effect," from the agricultural literature, with the added requirement of a migratory host population to maintain treatment susceptibility. This work highlights the role that migratory hosts may play in shared wildlife/livestock disease, where evolution can occur in ecological time.

20.
R Soc Open Sci ; 6(9): 191231, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31598328

RESUMO

Hunters often target species that require resource investment disproportionate to associated nutritional rewards. Costly signalling theory provides a potential explanation, proposing that hunters target species that impose high costs (e.g. higher failure and injury risks, lower consumptive returns) because it signals an ability to absorb costly behaviour. If costly signalling is relevant to contemporary 'big game' hunters, we would expect hunters to pay higher prices to hunt taxa with higher perceived costs. Accordingly, we hypothesized that hunt prices would be higher for taxa that are larger-bodied, rarer, carnivorous, or described as dangerous or difficult to hunt. In a dataset on 721 guided hunts for 15 North American large mammals, prices listed online increased with body size in carnivores (from approximately $550 to $1800 USD/day across the observed range). This pattern suggests that elements of costly signals may persist among contemporary non-subsistence hunters. Persistence might simply relate to deception, given that signal honesty and fitness benefits are unlikely in such different conditions compared with ancestral environments in which hunting behaviour evolved. If larger-bodied carnivores are generally more desirable to hunters, then conservation and management strategies should consider not only the ecology of the hunted but also the motivations of hunters.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA