Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mol Biol Rep ; 51(1): 227, 2024 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-38281301

RESUMO

Traditional crop breeding techniques are not quickly boosting yields to fulfill the expanding population needs. Long crop lifespans hinder the ability of plant breeding to develop superior crop varieties. Due to the arduous crossing, selecting, and challenging processes, it can take decades to establish new varieties with desired agronomic traits. Develop new plant varieties instantly to reduce hunger and improve food security. As a result of the adoption of conventional agricultural techniques, crop genetic diversity has decreased over time. Several traditional and molecular techniques, such as genetic selection, mutant breeding, somaclonal variation, genome-wide association studies, and others, have improved agronomic traits associated with agricultural plant productivity, quality, and resistance to biotic and abiotic stresses. In addition, modern genome editing approaches based on programmable nucleases, CRISPR, and Cas9 proteins have escorted an exciting new era of plant breeding. Plant breeders and scientists worldwide rely on cutting-edge techniques like quick breeding, genome editing tools, and high-throughput phenotyping to boost crop breeding output. This review compiles discoveries in numerous areas of crop breeding, such as using genome editing tools to accelerate the breeding process and create yearly crop generations with the desired features, to describe the shift from conventional to modern plant breeding techniques.


Assuntos
Sistemas CRISPR-Cas , Embaralhamento de DNA , Sistemas CRISPR-Cas/genética , Plantas Geneticamente Modificadas/genética , Estudo de Associação Genômica Ampla , Produtos Agrícolas/genética , Genoma de Planta/genética , Melhoramento Vegetal/métodos
2.
Int J Mol Sci ; 25(6)2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38542283

RESUMO

The global expansion of rapeseed seed quality has been focused on maintaining glucosinolate (GSL) and erucic acid (EA) contents. However, the influence of seed GSL and EA contents on the germination process under drought stress remains poorly understood. Herein, 114 rapeseed accessions were divided into four groups based on GSL and EA contents to investigate their performance during seed imbibition under drought stress. Our results revealed significant variations in seed germination-related traits, particularly with higher GSL and EA, which exhibited higher germination % (G%) and lower mean germination time (MGT) under drought stress conditions. Moreover, osmoregulation, enzymatic system and hormonal regulation were improved in high GSL and high EA (HGHE) versus low GSL and low EA (LGLE) seeds, indicating the essential protective role of GSL and EA during the germination process in response to drought stress. The transcriptional regulation mechanism for coordinating GSL-EA-related pathways in response to drought stress during seed imbibition was found to involve the differential expression of sugar metabolism-, antioxidant-, and hormone-related genes with higher enrichment in HGHE compared to LGLE seeds. GO enrichment analysis showed higher variations in transcription regulator activity and DNA-binding transcription factors, as well as ATP and microtubule motor activity in GSL-EA-related pathways. Furthermore, KEGG analysis identified cellular processes, environmental information processing, and metabolism categories, with varied gene participation between GSL, EA and GSL-EA-related pathways. For further clarification, QY7 (LGLE) seeds were primed with different concentrations of GSL and EA under drought stress conditions. The results showed that 200 µmol/L of GSL and 400 µmol/L of EA significantly improved G%, MGT, and seedling fresh weight, besides regulating stress and fatty acid responsive genes during the seed germination process under drought stress conditions. Conclusively, exogenous application of GSL and EA is considered a promising method for enhancing the drought tolerance of LGLE seeds. Furthermore, the current investigation could provide a theoretical basis of GSL and EA roles and their underlying mechanisms in stress tolerance during the germination process.


Assuntos
Brassica napus , Brassica rapa , Ácidos Erúcicos , Germinação/genética , Brassica napus/genética , Glucosinolatos/metabolismo , Secas , Sementes/genética , Sementes/metabolismo , Brassica rapa/genética , Perfilação da Expressão Gênica
3.
Med Res Rev ; 42(1): 399-425, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34287999

RESUMO

RNA viruses, including the coronavirus, develop a unique strategy to evade the host immune response by interrupting the normal function of cytosolic retinoic acid-inducible gene-I (RIG-I)-like receptors (RLRs). RLRs rapidly detect atypical nucleic acids, thereby triggering the antiviral innate immune signaling cascade and subsequently activates the interferons transcription and induction of other proinflammatory cytokines and chemokines. Nonetheless, these receptors are manipulated by viral proteins to subvert the host immune system and sustain the infectivity and replication potential of the virus. RIG-I senses the single-stranded, double-stranded, and short double-stranded RNAs and recognizes the key signature, a 5'-triphosphate moiety, at the blunt end of the viral RNA. Meanwhile, the melanoma differentiation-associated gene 5 (MDA5) is triggered by longer double stranded RNAs, messenger RNAs lacking 2'-O-methylation in their 5'-cap, and RNA aggregates. Therefore, structural insights into the nucleic-acid-sensing and downstream signaling mechanisms of these receptors hold great promise for developing effective antiviral therapeutic interventions. This review highlights the critical roles played by RLRs in viral infections as well as their ligand recognition mechanisms. In addition, we highlight the crosstalk between the toll-like receptors and RLRs and provide a comprehensive overview of RLR-associated diseases as well as the therapeutic potential of RLRs for the development of antiviral-drugs. Moreover, we believe that these RLR-based antivirals will serve as a step toward countering the recent coronavirus disease 2019 pandemic.


Assuntos
COVID-19 , Viroses , Proteína DEAD-box 58 , Humanos , Imunidade Inata , RNA Viral , SARS-CoV-2 , Viroses/tratamento farmacológico
4.
Mol Biol Rep ; 49(12): 11255-11271, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35802276

RESUMO

Salt stress is one of the leading threats to crop growth and productivity across the globe. Salt stress induces serious alterations in plant physiological, metabolic, biochemical functioning and it also disturbs antioxidant activities, cellular membranes, photosynthetic performance, nutrient uptake and plant water uptake and resulting in a significant reduction in growth and production. The application of osmoprotectants is considered as an important strategy to induce salt tolerance in plants. Trehalose (Tre) has emerged an excellent osmolyte to induce salinity tolerance and it got considerable attention in recent times. Under salinity stress, Tre helps to maintain the membrane integrity, and improves plant water relations, nutrient uptake and reduces the electrolyte leakage and lipid per-oxidation. Tre also improves gas exchange characteristics, protects the photosynthetic apparatus from salinity induced oxidative damages and brings ultra-structure changes in the plant body to induce salinity tolerance. Moreover, Tre also improves antioxidant activities and expression of stress responsive proteins and genes and confers salt tolerance in plants. Additionally, Tre is also involved in signaling association with signaling molecules and phytohormones and resultantly improved the plant performance under salt stress. Thus, it is interesting to understand the role of Tre in mediating the salinity tolerance in plants. Therefore, in this review we have summarized the different physiological and molecular roles of Tre to induce salt tolerance in plants. Moreover, we have also provided the information on Tre cross-talk with various osmolytes and hormones, and its role in stress responsive genes and antioxidant activities. Lastly, we also shed light on research gaps that need to be addressed in future studies. Therefore, this review will help the scientists to learn more about the Tre in changing climate conditions and it will also provide new insights to insights that could be used to develop salinity tolerance in plants.


Assuntos
Antioxidantes , Trealose , Trealose/farmacologia , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Estresse Fisiológico/genética , Tolerância ao Sal/genética , Salinidade , Água/metabolismo
5.
J Nanobiotechnology ; 20(1): 163, 2022 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-35351148

RESUMO

Selenium nanoparticles (SeNPs) have attracted considerable attention globally due to their significant potential for alleviating abiotic stresses in plants. Accordingly, further research has been conducted to develop nanoparticles using chemical ways. However, our knowledge about the potential benefit or phytotoxicity of bioSeNPs in rapeseed is still unclear. Herein, we investigated the effect of bioSeNPs on growth and physiochemical attributes, and selenium detoxification pathways compared to sodium selenite (Se (IV)) during the early seedling stage under normal and salt stress conditions. Our findings showed that the range between optimal and toxic levels of bioSeNPs was wider than Se (IV), which increased the plant's ability to reduce salinity-induced oxidative stress. BioSeNPs improved the phenotypic characteristics of rapeseed seedlings without the sign of toxicity, markedly elevated germination, growth, photosynthetic efficiency and osmolyte accumulation versus Se (IV) under normal and salt stress conditions. In addition to modulation of Na+ and K+ uptake, bioSeNPs minimized the ROS level and MDA content by activating the antioxidant enzymes engaged in ROS detoxification by regulating these enzyme-related genes expression patterns. Importantly, the main effect of bioSeNPs and Se (IV) on plant growth appeared to be correlated with the change in the expression levels of Se-related genes. Our qRT-PCR results revealed that the genes involved in Se detoxification in root tissue were upregulated upon Se (IV) treated seedlings compared to NPs, indicating that bioSeNPs have a slightly toxic effect under higher concentrations. Furthermore, bioSeNPs might improve lateral root production by increasing the expression level of LBD16. Taken together, transamination and selenation were more functional methods of Se detoxification and proposed different degradation pathways that synthesized malformed or deformed selenoproteins, which provided essential mechanisms to increase Se tolerance at higher concentrations in rapeseed seedlings. Current findings could add more knowledge regarding the mechanisms underlying bioSeNPs induced plant growth.


Assuntos
Brassica napus , Nanopartículas , Selênio , Brassica napus/metabolismo , Estresse Salino , Selênio/metabolismo , Selênio/farmacologia , Selenito de Sódio/farmacologia
6.
Curr Issues Mol Biol ; 43(3): 1950-1976, 2021 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-34889892

RESUMO

Genome editing (GE) has revolutionized the biological sciences by creating a novel approach for manipulating the genomes of living organisms. Many tools have been developed in recent years to enable the editing of complex genomes. Therefore, a reliable and rapid approach for increasing yield and tolerance to various environmental stresses is necessary to sustain agricultural crop production for global food security. This critical review elaborates the GE tools used for crop improvement. These tools include mega-nucleases (MNs), such as zinc-finger nucleases (ZFNs), and transcriptional activator-like effector nucleases (TALENs), and clustered regularly interspaced short palindromic repeats (CRISPR). Specifically, this review addresses the latest advancements in the role of CRISPR/Cas9 for genome manipulation for major crop improvement, including yield and quality development of biotic stress- and abiotic stress-tolerant crops. Implementation of this technique will lead to the production of non-transgene crops with preferred characteristics that can result in enhanced yield capacity under various environmental stresses. The CRISPR/Cas9 technique can be combined with current and potential breeding methods (e.g., speed breeding and omics-assisted breeding) to enhance agricultural productivity to ensure food security. We have also discussed the challenges and limitations of CRISPR/Cas9. This information will be useful to plant breeders and researchers in the thorough investigation of the use of CRISPR/Cas9 to boost crops by targeting the gene of interest.


Assuntos
Sistemas CRISPR-Cas , Produtos Agrícolas/genética , Edição de Genes , Melhoramento Vegetal , Resistência à Doença/genética , Qualidade dos Alimentos , Abastecimento de Alimentos , Engenharia Genética , Genoma de Planta , Genômica/métodos , Plantas Geneticamente Modificadas
7.
Ecotoxicol Environ Saf ; 225: 112695, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34478972

RESUMO

The advent of the nanotechnology era offers a unique opportunity for sustainable agriculture, and the contribution of nanoparticles (NPs) to ameliorate abiotic stresses became the new area of interest for researchers due to their special physiochemical characteristics in the biological system. Salinity is a key devastating abiotic factor that hinders the development and yield of rapeseed. On the flip side, the impact of nanoparticles on plant hormones upon salt stress during seed imbibition and germination has been poorly understood. Hence, we aimed to study the influence of nanopriming on plant hormones and germination processes using selenium and zinc oxide nanoparticles (SeNPs and ZnONPs) during seed imbibition and the early seedling stage upon salinity stress. Nanopriming showed a positive effect on final germination percentage, germination rate, seed microstructure, and antioxidant enzyme activity of two rapeseed cultivars under salt stress. Moreover, nano-treatment decreased the expression of abscisic acid related genes BnCYP707A1, 3, and 4 during the priming time and after sowing, where the levels of BnCYP707A1, and 3 genes showed a slightly significant difference between the nanopriming and hydropriming, which gave an evidence that the nanopriming influenced the ABA levels then elevated the seed germination with SeNPs and ZnONPs. Likewise, nanoparticles significantly elevated the expression levels of BnGA20ox, BnGA3ox and BnCPS genes during the germination stage, especially at 24 h after being sown in salt stress. That confirms the positive role of SeNPs and ZnONPs in regulating gibberellic acid level, which increases the germination in primed seeds as compared to unprimed seeds and hydroprimed seeds. Additionally, our results demonstrated that nanopriming regulated the expression level of BnCAM and BnPER during priming time and after sowing, along with the various levels of expression remarkably in BnEXP4 and BnRAB28, especially at 24 h of being sown under salt stress, which promoted seed germination and early seedling growth. Overall, this work provides new insights into mechanisms underlying the interactions of SeNPs and ZnONPs with plant hormones during the seed imbibition and early seedling stage, consequently enhanced plant growth and development. Additionally, these findings portrayed that the application of SeNPs and ZnONPs could be a new strategy and useful approach to enhance tolerance against salinity in rapeseed plants.


Assuntos
Brassica napus , Nanopartículas , Selênio , Óxido de Zinco , Brassica napus/genética , Germinação , Nanopartículas/toxicidade , Estresse Salino , Plântula , Sementes , Óxido de Zinco/toxicidade
8.
Int J Mol Sci ; 22(11)2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-34206009

RESUMO

Toll-like receptor (TLR) signaling plays a critical role in the induction and progression of autoimmune diseases such as rheumatoid arthritis, systemic lupus erythematous, experimental autoimmune encephalitis, type 1 diabetes mellitus and neurodegenerative diseases. Deciphering antigen recognition by antibodies provides insights and defines the mechanism of action into the progression of immune responses. Multiple strategies, including phage display and hybridoma technologies, have been used to enhance the affinity of antibodies for their respective epitopes. Here, we investigate the TLR4 antibody-binding epitope by computational-driven approach. We demonstrate that three important residues, i.e., Y328, N329, and K349 of TLR4 antibody binding epitope identified upon in silico mutagenesis, affect not only the interaction and binding affinity of antibody but also influence the structural integrity of TLR4. Furthermore, we predict a novel epitope at the TLR4-MD2 interface which can be targeted and explored for therapeutic antibodies and small molecules. This technique provides an in-depth insight into antibody-antigen interactions at the resolution and will be beneficial for the development of new monoclonal antibodies. Computational techniques, if coupled with experimental methods, will shorten the duration of rational design and development of antibody therapeutics.


Assuntos
Anticorpos Monoclonais/imunologia , Artrite Reumatoide/imunologia , Encefalite/imunologia , Epitopos/genética , Doença de Hashimoto/imunologia , Doenças Neurodegenerativas/imunologia , Receptor 4 Toll-Like/genética , Sequência de Aminoácidos/genética , Anticorpos Monoclonais/genética , Anticorpos Monoclonais/uso terapêutico , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/genética , Técnicas de Visualização da Superfície Celular , Encefalite/genética , Encefalite/patologia , Mapeamento de Epitopos/métodos , Epitopos/imunologia , Doença de Hashimoto/genética , Doença de Hashimoto/patologia , Humanos , Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/patologia , Ligação Proteica/genética , Receptor 4 Toll-Like/antagonistas & inibidores , Receptor 4 Toll-Like/imunologia
9.
Int J Mol Sci ; 22(17)2021 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-34502033

RESUMO

The novel coronavirus disease, caused by severe acute respiratory coronavirus 2 (SARS-CoV-2), rapidly spreading around the world, poses a major threat to the global public health. Herein, we demonstrated the binding mechanism of PF-07321332, α-ketoamide, lopinavir, and ritonavir to the coronavirus 3-chymotrypsin-like-protease (3CLpro) by means of docking and molecular dynamic (MD) simulations. The analysis of MD trajectories of 3CLpro with PF-07321332, α-ketoamide, lopinavir, and ritonavir revealed that 3CLpro-PF-07321332 and 3CLpro-α-ketoamide complexes remained stable compared with 3CLpro-ritonavir and 3CLpro-lopinavir. Investigating the dynamic behavior of ligand-protein interaction, ligands PF-07321332 and α-ketoamide showed stronger bonding via making interactions with catalytic dyad residues His41-Cys145 of 3CLpro. Lopinavir and ritonavir were unable to disrupt the catalytic dyad, as illustrated by increased bond length during the MD simulation. To decipher the ligand binding mode and affinity, ligand interactions with SARS-CoV-2 proteases and binding energy were calculated. The binding energy of the bespoke antiviral PF-07321332 clinical candidate was two times higher than that of α-ketoamide and three times than that of lopinavir and ritonavir. Our study elucidated in detail the binding mechanism of the potent PF-07321332 to 3CLpro along with the low potency of lopinavir and ritonavir due to weak binding affinity demonstrated by the binding energy data. This study will be helpful for the development and optimization of more specific compounds to combat coronavirus disease.


Assuntos
Antivirais/farmacologia , Tratamento Farmacológico da COVID-19 , Proteases 3C de Coronavírus/antagonistas & inibidores , Inibidores de Protease de Coronavírus/farmacologia , Lactamas/farmacologia , Leucina/farmacologia , Nitrilas/farmacologia , Prolina/farmacologia , Antivirais/uso terapêutico , Domínio Catalítico/efeitos dos fármacos , Proteases 3C de Coronavírus/metabolismo , Inibidores de Protease de Coronavírus/uso terapêutico , Humanos , Lactamas/uso terapêutico , Leucina/uso terapêutico , Lopinavir/farmacologia , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Nitrilas/uso terapêutico , Prolina/uso terapêutico , Ritonavir/farmacologia , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/enzimologia
10.
Int J Mol Sci ; 21(8)2020 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-32325904

RESUMO

Toll-like receptor 3 (TLR3) provides the host with antiviral defense by initiating an immune signaling cascade for the production of type I interferons. The X-ray structures of isolated TLR3 ectodomain (ECD) and transmembrane (TM) domains have been reported; however, the structure of a membrane-solvated, full-length receptor remains elusive. We investigated an all-residue TLR3 model embedded inside a phospholipid bilayer using molecular dynamics simulations. The TLR3-ECD exhibited a ~30°-35° tilt on the membrane due to the electrostatic interaction between the N-terminal subdomain and phospholipid headgroups. Although the movement of dsRNA did not affect the dimer integrity of TLR3, its sugar-phosphate backbone was slightly distorted with the orientation of the ECD. TM helices exhibited a noticeable tilt and curvature but maintained a consistent crossing angle, avoiding the hydrophobic mismatch with the bilayer. Residues from the αD helix and the CD and DE loops of the Toll/interleukin-1 receptor (TIR) domains were partially absorbed into the lower leaflet of the bilayer. We found that the previously unknown TLR3-TIR dimerization interface could be stabilized by the reciprocal contact between αC and αD helices of one subunit and the αC helix and the BB loop of the other. Overall, the present study can be helpful to understand the signaling-competent form of TLR3 in physiological environments.


Assuntos
Bicamadas Lipídicas/química , Fosfolipídeos/química , Receptor 3 Toll-Like/química , Humanos , Interações Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Conformação Molecular , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Fosfolipídeos/metabolismo , Ligação Proteica , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , RNA de Cadeia Dupla/química , RNA de Cadeia Dupla/metabolismo , Relação Estrutura-Atividade , Receptor 3 Toll-Like/metabolismo
11.
Molecules ; 25(3)2020 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-32023919

RESUMO

The integration of computational techniques into drug development has led to a substantial increase in the knowledge of structural, chemical, and biological data. These techniques are useful for handling the big data generated by empirical and clinical studies. Over the last few years, computer-aided drug discovery methods such as virtual screening, pharmacophore modeling, quantitative structure-activity relationship analysis, and molecular docking have been employed by pharmaceutical companies and academic researchers for the development of pharmacologically active drugs. Toll-like receptors (TLRs) play a vital role in various inflammatory, autoimmune, and neurodegenerative disorders such as sepsis, rheumatoid arthritis, inflammatory bowel disease, Alzheimer's disease, multiple sclerosis, cancer, and systemic lupus erythematosus. TLRs, particularly TLR4, have been identified as potential drug targets for the treatment of these diseases, and several relevant compounds are under preclinical and clinical evaluation. This review covers the reported computational studies and techniques that have provided insights into TLR4-targeting therapeutics. Furthermore, this article provides an overview of the computational methods that can benefit a broad audience in this field and help with the development of novel drugs for TLR-related disorders.


Assuntos
Preparações Farmacêuticas/química , Receptor 4 Toll-Like/química , Receptor 4 Toll-Like/metabolismo , Desenho Assistido por Computador , Mineração de Dados , Desenho de Fármacos , Humanos , Modelos Moleculares , Simulação de Acoplamento Molecular , Relação Quantitativa Estrutura-Atividade
12.
Int J Mol Sci ; 20(11)2019 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-31174387

RESUMO

Structure-based drug design is becoming an essential tool for faster and more cost-efficient lead discovery relative to the traditional method. Genomic, proteomic, and structural studies have provided hundreds of new targets and opportunities for future drug discovery. This situation poses a major problem: the necessity to handle the "big data" generated by combinatorial chemistry. Artificial intelligence (AI) and deep learning play a pivotal role in the analysis and systemization of larger data sets by statistical machine learning methods. Advanced AI-based sophisticated machine learning tools have a significant impact on the drug discovery process including medicinal chemistry. In this review, we focus on the currently available methods and algorithms for structure-based drug design including virtual screening and de novo drug design, with a special emphasis on AI- and deep-learning-based methods used for drug discovery.


Assuntos
Aprendizado Profundo , Descoberta de Drogas/métodos , Relação Quantitativa Estrutura-Atividade , Simulação de Acoplamento Molecular/métodos
13.
Mar Drugs ; 13(7): 4217-30, 2015 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-26198237

RESUMO

Lipopolysaccharide (LPS) is a component of the outer membrane of mainly Gram-negative bacteria and cyanobacteria. The LPS molecules from marine and terrestrial bacteria show structural variations, even among strains within the same species living in the same environment. Cyanobacterial LPS has a unique structure, since it lacks heptose and 3-deoxy-d-manno-octulosonic acid (also known as keto-deoxyoctulosonate (KDO)), which are present in the core region of common Gram-negative LPS. In addition, the cyanobacterial lipid A region lacks phosphates and contains odd-chain hydroxylated fatty acids. While the role of Gram-negative lipid A in the regulation of the innate immune response through Toll-like Receptor (TLR) 4 signaling is well characterized, the role of the structurally different cyanobacterial lipid A in TLR4 signaling is not well understood. The uncontrolled inflammatory response of TLR4 leads to autoimmune diseases such as sepsis, and thus the less virulent marine cyanobacterial LPS molecules can be effective to inhibit TLR4 signaling. This review highlights the structural comparison of LPS molecules from marine cyanobacteria and Gram-negative bacteria. We discuss the potential use of marine cyanobacterial LPS as a TLR4 antagonist, and the effects of cyanobacterial LPS on humans and marine organisms.


Assuntos
Cianobactérias/química , Lipopolissacarídeos/química , Organismos Aquáticos/efeitos dos fármacos , Bactérias Gram-Negativas/química , Humanos , Lipopolissacarídeos/isolamento & purificação , Lipopolissacarídeos/farmacologia , Sepse/tratamento farmacológico , Sepse/fisiopatologia , Receptor 4 Toll-Like/antagonistas & inibidores , Receptor 4 Toll-Like/efeitos dos fármacos
14.
Trends Plant Sci ; 29(4): 482-494, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37977879

RESUMO

Plant microbiomes play a vital role in promoting plant growth and resilience to cope with environmental stresses. Plant microbiome engineering holds significant promise to increase crop yields, but there is uncertainty about how this can best be achieved. We propose a step-by-step approach involving customized direct and indirect methods to condition soils and to match plants and microbiomes. Although three approaches, namely the development of (i) 'plant- and microbe-friendly' soils, (ii) 'microbe-friendly' plants, and (iii) 'plant-friendly' microbiomes, have been successfully tested in isolation, we propose that the combination of all three may lead to a step-change towards higher and more stable crop yields. This review aims to provide knowledge, future directions, and practical guidance to achieve this goal via customized plant microbiome engineering.


Assuntos
Microbiota , Rizosfera , Microbiologia do Solo , Plantas/genética , Solo , Segurança Alimentar , Raízes de Plantas
15.
J Med Case Rep ; 18(1): 86, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38438911

RESUMO

BACKGROUND: Peutz-Jeghers syndrome is a rare hereditary condition characterized by gastrointestinal polyps and pigmented oral lesions. The case contributes to a deeper understanding of Peutz-Jeghers syndrome and underscores the significance of interdisciplinary collaboration for accurate diagnosis and tailored therapeutic strategies. CASE DESCRIPTION: We present a case of a 15-year-old Afghan female patient with multiple polyps throughout the gastrointestinal tract and mucocutaneous pigmentation. Despite previous medical visits and colonoscopies, her symptoms persisted. A multidisciplinary team discussed the case and recommended further investigations and interventions. A polypectomy was performed, confirming the presence of hamartomatous polyps. The patient was diagnosed with Peutz-Jeghers syndrome, but during the course of treatment she went through complications and was managed surgically as well. CONCLUSION: Timely polyp removal and lifelong surveillance are crucial in managing Peutz-Jeghers syndrome. Further research and genetic analysis are needed to improve understanding and management of this rare disorder.


Assuntos
Síndrome de Peutz-Jeghers , Pólipos , Feminino , Humanos , Adolescente , Síndrome de Peutz-Jeghers/complicações , Síndrome de Peutz-Jeghers/diagnóstico , Síndrome de Peutz-Jeghers/cirurgia , Estômago , Duodeno , Intestino Grosso
16.
ACS Appl Bio Mater ; 7(7): 4352-4365, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38900491

RESUMO

Philadelphia-positive (Ph+) leukemia is a type of blood cancer also known as acute lymphoblastic leukemia (ALL), affecting 20-30% of adults diagnosed worldwide and having an engraved prognosis as compared to other types of leukemia. The current treatment regimens mainly rely on tyrosine kinase inhibitors (TKIs) and bone marrow transplants. To date, several generations of TKIs have been developed due to associated resistance and frequent relapse, with cardiovascular system anomalies being the most devastating complication. Nanotechnology has the potential to address these limitations by the targeted drug delivery and controlled release of TKIs. This study focused on the titanium dioxide (TiO2) and graphene oxide (GO) nanocomposite employment to load nilotinib and ponatinib TKIs for therapy of Ph+ leukemia cell line (K562) and Ba/F3 cells engineered to express BCR-ABL oncogene. Meanwhile, after treatment, the oncogene expressing fibroblast cells (Rat-1 P185) were evaluated for their colony formation ability under 3D conditions. To validate the nanocomposite formation, the TiO2-GO nanocomposites were characterized by scanning electron microscope, DLS, XRD, FTIR, zeta potential, EDX, and element mapping. The TKI-loaded TiO2-GO was not inferior to the free drugs after evaluating their effects by a cell viability assay (XTT), apoptosis induction, and colony formation inhibition. The cell signaling pathways of the mammalian target of rapamycin (mTOR), signal transducers and activators of transcription 5 (STAT5), and extracellular signal-regulated kinase (Erk1/2) were also investigated by Western blot. These signaling pathways were significantly downregulated in the TKI-loaded TiO2-GO-treated groups. Based on the findings above, we can conclude that TiO2-GO exhibited excellent drug delivery potential that can be used for Ph+ leukemia therapy in the future, subject to further investigations.


Assuntos
Antineoplásicos , Sobrevivência Celular , Grafite , Nanocompostos , Titânio , Grafite/química , Grafite/farmacologia , Titânio/química , Titânio/farmacologia , Nanocompostos/química , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/química , Sobrevivência Celular/efeitos dos fármacos , Teste de Materiais , Tamanho da Partícula , Ensaios de Seleção de Medicamentos Antitumorais , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Proliferação de Células/efeitos dos fármacos , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Leucemia Mielogênica Crônica BCR-ABL Positiva/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/química , Animais
17.
Microorganisms ; 11(2)2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36838244

RESUMO

Antimicrobial resistance (AMR) is a major global public health concern mainly affecting low- and middle-income countries (LMICs) due to lack of awareness, inadequate healthcare and sanitation infrastructure, and other environmental factors. In this study, we aimed to link microbial assembly and covariates (body mass index, smoking, and use of antibiotics) to gut microbiome structure and correlate the predictive antimicrobial gene prevalence (piARG) using PICRUSt2. We examined the gastrointestinal and oral microbial profiles of healthy adults in Pakistan through 16S rRNA gene sequencing with a focus on different ethnicities, antibiotic usage, drinking water type, smoking, and other demographic measures. We then utilised a suite of innovative statistical tools, driven by numerical ecology and machine learning, to address the above aims. We observed that drinking tap water was the main contributor to increased potential AMR signatures in the Pakistani cohort compared to other factors considered. Microbial niche breadth analysis highlighted an aberrant gut microbial signature of smokers with increased age. Moreover, covariates such as smoking and age impact the human microbial community structure in this Pakistani cohort.

18.
Chemosphere ; 318: 137920, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36690256

RESUMO

Water bodies are being polluted rapidly by disposal of toxic chemicals with their huge entrance into drinking water supply chain. Among these pollutants, heavy metal ions (HMIs) are the most challenging one due to their non-biodegradability, toxicity, and ability to biologically hoard in ecological systems, thus posing a foremost danger to human health. This can be addressed by robust, sensitive, selective, and reliable sensing of metal ions which can be achieved by Metal organic frameworks (MOF) based electrochemical sensors. In the present era, MOFs have caught greater interest in a variety of applications including sensing of hazardous pollutants such as heavy metal ions. So, in this review article, types, synthesis and working mechanism of MOF based sensors is explained to give general overview with updated literature. First time, detailed study is done for sensing of metal ions such as chromium, mercury, zinc, copper, manganese, palladium, lead, iron, cadmium and lanthanide by MOFs based electrochemical sensors. The use of MOFs as electrochemical sensors has attractive success story along with some challenges of the area. Considering these challenges, we attempted to highlight the milestone achieved and shortcomings along with future prospective of the MOFs for employing it in electrochemical sensing devices for HMIs. Finally, challenges and future prospects have been discussed to promote the development of MOFs-based sensors in future.


Assuntos
Poluentes Ambientais , Estruturas Metalorgânicas , Metais Pesados , Humanos , Água , Íons
19.
PeerJ ; 11: e14833, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36815980

RESUMO

Plant hybridization is an important breeding technique essential for producing a genotype (hybrid) with favorable traits (e.g., stress tolerance, pest resistance, high yield potential etc.) to increase agronomic, economic and commercial values. Studying of genetic dominance among the population helps to determine gene action, heritability and candidate gene selection for plant breeding program. Therefore, this investigation was aimed to evaluate gene action, heritability, genetic advance and heterosis of rice root, agronomic, and yield component traits under water deficit conditions. In this study, crossing was performed among the four different water-deficit tolerant rice genotypes to produce better hybrid (F1), segregating (F2) and back-cross (BC1 and BC2) populations. The Giza 178, WAB56-204, and Sakha104 × WAB56-104 populations showed the better physiological and agronomical performances, which provided better adaptability of the populations to water deficit condition. Additionally, the estimation of heterosis and heterobeltiosis of some quantitative traits in rice populations were also studied. The inheritance of all studied traits was influenced by additive gene actions. Dominance gene actions played a major role in controlling the genetic variance among studied traits in both crossed populations under well-watered and drought conditions. The additive × additive type of gene interactions was essential for the inheritance of root length, root/shoot ratio, 1,000-grain weight, and sterility % of two crossed populations under both conditions. On the contrary, the additive × dominance type of gene interactions was effective in the inheritance of all studied traits, except duration in Giza178 × Sakha106, and plant height in Sakha104 × WAB56-104 under water deficit condition. In both crosses, the dominance × dominance type of gene interactions was effective in the inheritance of root volume, root/shoot ratio, number of panicles/plant and 1,000-grain weight under both conditions. Moreover, dominance × dominance type of gene interaction played a major role in the inheritance of root length, number of roots/plant, plant height, panicle length, number of filled grain/panicle and grain yield/plant in Giza178 × Sakha106 under both conditions. The studied traits in both crossed populations indicated better genetic advance as they showed advanced qualitative and quantitative characters in rice populations under water deficit condition. Overall, our findings open a new avenue of future phenotypic and genotypic association studies in rice. These insights might be useful to the plant breeders and farmers for developing water deficit tolerant rice cultivars.


Assuntos
Oryza , Oryza/genética , Melhoramento Vegetal , Fenótipo , Genótipo , Água
20.
Plants (Basel) ; 11(8)2022 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-35448780

RESUMO

Cereals are the main source of human food on our planet. The ever-increasing food demand, continuously changing environment, and diseases of cereal crops have made adequate production a challenging task for feeding the ever-increasing population. Plant breeders are striving their hardest to increase production by manipulating conventional breeding methods based on the biology of plants, either self-pollinating or cross-pollinating. However, traditional approaches take a decade, space, and inputs in order to make crosses and release improved varieties. Recent advancements in genome editing tools (GETs) have increased the possibility of precise and rapid genome editing. New GETs such as CRISPR/Cas9, CRISPR/Cpf1, prime editing, base editing, dCas9 epigenetic modification, and several other transgene-free genome editing approaches are available to fill the lacuna of selection cycles and limited genetic diversity. Over the last few years, these technologies have led to revolutionary developments and researchers have quickly attained remarkable achievements. However, GETs are associated with various bottlenecks that prevent the scaling development of new varieties that can be dealt with by integrating the GETs with the improved conventional breeding methods such as speed breeding, which would take plant breeding to the next level. In this review, we have summarized all these traditional, molecular, and integrated approaches to speed up the breeding procedure of cereals.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA