Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
2.
Artigo em Inglês | MEDLINE | ID: mdl-37874712

RESUMO

Researchers have derived many theoretical models for specifying users' insights as they interact with a visualization system. These representations are essential for understanding the insight discovery process, such as when inferring user interaction patterns that lead to insight or assessing the rigor of reported insights. However, theoretical models can be difficult to apply to existing tools and user studies, often due to discrepancies in how insight and its constituent parts are defined. This paper calls attention to the consistent structures that recur across the visualization literature and describes how they connect multiple theoretical representations of insight. We synthesize a unified formalism for insights using these structures, enabling a wider audience of researchers and developers to adopt the corresponding models. Through a series of theoretical case studies, we use our formalism to compare and contrast existing theories, revealing interesting research challenges in reasoning about a user's domain knowledge and leveraging synergistic approaches in data mining and data management research.

3.
IEEE Trans Vis Comput Graph ; 29(1): 1048-1058, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36155454

RESUMO

Examples are useful for inspiring ideas and facilitating implementation in visualization design. However, there is little understanding of how visualization designers use examples, and how computational tools may support such activities. In this paper, we contribute an exploratory study of current practices in incorporating visualization examples. We conducted semi-structured interviews with 15 university students and 15 professional designers. Our analysis focus on two core design activities: searching for examples and utilizing examples. We characterize observed strategies and tools for performing these activities, as well as major challenges that hinder designers' current workflows. In addition, we identify themes that cut across these two activities: criteria for determining example usefulness, curation practices, and design fixation. Given our findings, we discuss the implications for visualization design and authoring tools and highlight critical areas for future research.

4.
Artigo em Inglês | MEDLINE | ID: mdl-37871053

RESUMO

Findings from graphical perception can guide visualization recommendation algorithms in identifying effective visualization designs. However, existing algorithms use knowledge from, at best, a few studies, limiting our understanding of how complementary (or contradictory) graphical perception results influence generated recommendations. In this paper, we present a pipeline of applying a large body of graphical perception results to develop new visualization recommendation algorithms and conduct an exploratory study to investigate how results from graphical perception can alter the behavior of downstream algorithms. Specifically, we model graphical perception results from 30 papers in Draco-a framework to model visualization knowledge-to develop new recommendation algorithms. By analyzing Draco-generated algorithms, we showcase the feasibility of our method to (1) identify gaps in existing graphical perception literature informing recommendation algorithms, (2) cluster papers by their preferred design rules and constraints, and (3) investigate why certain studies can dominate Draco's recommendations, whereas others may have little influence. Given our findings, we discuss the potential for mutually reinforcing advancements in graphical perception and visualization recommendation research.

5.
IEEE Trans Vis Comput Graph ; 28(1): 346-356, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34587050

RESUMO

Although we have seen a proliferation of algorithms for recommending visualizations, these algorithms are rarely compared with one another, making it difficult to ascertain which algorithm is best for a given visual analysis scenario. Though several formal frameworks have been proposed in response, we believe this issue persists because visualization recommendation algorithms are inadequately specified from an evaluation perspective. In this paper, we propose an evaluation-focused framework to contextualize and compare a broad range of visualization recommendation algorithms. We present the structure of our framework, where algorithms are specified using three components: (1) a graph representing the full space of possible visualization designs, (2) the method used to traverse the graph for potential candidates for recommendation, and (3) an oracle used to rank candidate designs. To demonstrate how our framework guides the formal comparison of algorithmic performance, we not only theoretically compare five existing representative recommendation algorithms, but also empirically compare four new algorithms generated based on our findings from the theoretical comparison. Our results show that these algorithms behave similarly in terms of user performance, highlighting the need for more rigorous formal comparisons of recommendation algorithms to further clarify their benefits in various analysis scenarios.

6.
IEEE Trans Vis Comput Graph ; 27(2): 1128-1138, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33031039

RESUMO

In the last two decades, interactive visualization and analysis have become a central tool in data-driven decision making. Concurrently to the contributions in data visualization, research in data management has produced technology that directly benefits interactive analysis. Here, we contribute a systematic review of 30 years of work in this adjacent field, and highlight techniques and principles we believe to be underappreciated in visualization work. We structure our review along two axes. First, we use task taxonomies from the visualization literature to structure the space of interactions in usual systems. Second, we created a categorization of data management work that strikes a balance between specificity and generality. Concretely, we contribute a characterization of 131 research papers along these two axes. We find that five notions in data management venues fit interactive visualization systems well: materialized views, approximate query processing, user modeling and query prediction, muiti-query optimization, lineage techniques, and indexing techniques. In addition, we find a preponderance of work in materialized views and approximate query processing, most targeting a limited subset of the interaction tasks in the taxonomy we used. This suggests natural avenues of future research both in visualization and data management. Our categorization both changes how we visualization researchers design and build our systems, and highlights where future work is necessary.

7.
IEEE Trans Vis Comput Graph ; 27(2): 401-411, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33048700

RESUMO

Static scatterplots often suffer from the overdraw problem on big datasets where object overlap causes undesirable visual clutter. The use of zooming in scatterplots can help alleviate this problem. With multiple zoom levels, more screen real estate is available, allowing objects to be placed in a less crowded way. We call this type of visualization scalable scatterplot visualizations, or SSV for short. Despite the potential of SSVs, existing systems and toolkits fall short in supporting the authoring of SSVs due to three limitations. First, many systems have limited scalability, assuming that data fits in the memory of one computer. Second, too much developer work, e.g., using custom code to generate mark layouts or render objects, is required. Third, many systems focus on only a small subset of the SSV design space (e.g. supporting a specific type of visual marks). To address these limitations, we have developed Kyrix-S, a system for easy authoring of SSVs at scale. Kyrix-S derives a declarative grammar that enables specification of a variety of SSVs in a few tens of lines of code, based on an existing survey of scatterplot tasks and designs. The declarative grammar is supported by a distributed layout algorithm which automatically places visual marks onto zoom levels. We store data in a multi-node database and use multi-node spatial indexes to achieve interactive browsing of large SSVs. Extensive experiments show that 1) Kyrix-S enables interactive browsing of SSVs of billions of objects, with response times under 500ms and 2) Kyrix-S achieves 4X-9X reduction in specification compared to a state-of-the-art authoring system.

8.
IEEE Trans Vis Comput Graph ; 26(1): 1246-1255, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31442990

RESUMO

Latency in a visualization system is widely believed to affect user behavior in measurable ways, such as requiring the user to wait for the visualization system to respond, leading to interruption of the analytic flow. While this effect is frequently observed and widely accepted, precisely how latency affects different analysis scenarios is less well understood. In this paper, we examine the role of latency in the context of visual search, an essential task in data foraging and exploration using visualization. We conduct a series of studies on Amazon Mechanical Turk and find that under certain conditions, latency is a statistically significant predictor of visual search behavior, which is consistent with previous studies. However, our results also suggest that task type, task complexity, and other factors can modulate the effect of latency, in some cases rendering latency statistically insignificant in predicting user behavior. This suggests a more nuanced view of the role of latency than previously reported. Building on these results and the findings of prior studies, we propose design guidelines for measuring and interpreting the effects of latency when evaluating performance on visual search tasks.

9.
IEEE Comput Graph Appl ; 39(6): 46-60, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31603814

RESUMO

Visual analytics tools integrate provenance recording to externalize analytic processes or user insights. Provenance can be captured on varying levels of detail, and in turn activities can be characterized from different granularities. However, current approaches do not support inferring activities that can only be characterized across multiple levels of provenance. We propose a task abstraction framework that consists of a three stage approach, composed of 1) initializing a provenance task hierarchy, 2) parsing the provenance hierarchy by using an abstraction mapping mechanism, and 3) leveraging the task hierarchy in an analytical tool. Furthermore, we identify implications to accommodate iterative refinement, context, variability, and uncertainty during all stages of the framework. We describe a use case which exemplifies our abstraction framework, demonstrating how context can influence the provenance hierarchy to support analysis. The article concludes with an agenda, raising and discussing challenges that need to be considered for successfully implementing such a framework.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA