Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Mais filtros

País/Região como assunto
Intervalo de ano de publicação
1.
Biofouling ; 40(9): 602-616, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39245976

RESUMO

Candida auris is a multidrug-resistant yeast that has seen a worrying increase during the COVID-19 pandemic. Give7/n this, new therapeutic options, such as controlled-release nanomaterials, may be promising in combating the infection. Therefore, this study aimed to develop amphotericin B (AmB) and micafungin (MICA)-loaded nanoemulsions (NEMA) and evaluated against biofilms of C. auris. Nanoemulsions (NEs) were characterized and determined minimum inhibitory concentration MIC90, checkerboard and anti-biofilm. NEMA presented a size of 53.7 and 81.4 nm for DLS and NTA, respectively, with good stability and spherical morphology. MICAmB incorporated efficiency was 88.4 and 99.3%, respectively. The release results show that AmB and MICA obtained a release of 100 and 63.4%, respectively. MICAmB and NEMA showed MIC90 values of 0.015 and 0.031 ug/mL, respectively and synergism. NEMA showed greater metabolic inhibition and morphological changes in mature biofilms. This drugs combination and co-encapsulation proved to be a promising therapy against C. auris biofilms.


Assuntos
Anfotericina B , Antifúngicos , Biofilmes , Candida auris , Emulsões , Micafungina , Testes de Sensibilidade Microbiana , Biofilmes/efeitos dos fármacos , Antifúngicos/farmacologia , Antifúngicos/química , Antifúngicos/administração & dosagem , Anfotericina B/farmacologia , Anfotericina B/administração & dosagem , Anfotericina B/química , Micafungina/farmacologia , Micafungina/administração & dosagem , Emulsões/farmacologia , Emulsões/química , Candida auris/efeitos dos fármacos , Humanos , SARS-CoV-2/efeitos dos fármacos , COVID-19 , Nanopartículas/química
2.
Crit Rev Microbiol ; : 1-22, 2023 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-37897442

RESUMO

Helicobacter pylori is a gram-negative, spiral-shaped, flagellated bacterium that colonizes the stomach of half the world's population. Helicobacter pylori infection causes pathologies of varying severity. Standard oral therapy fails in 15-20% since the barriers of the oral route decrease the bioavailability of antibiotics and the intrinsic factors of bacteria increase the rates of resistance. Nanoparticles and microparticles are promising strategies for drug delivery into the gastric mucosa and targeting H. pylori. The variety of building blocks creates systems with distinct colloidal, surface, and biological properties. These features improve drug-pathogen interactions, eliminate drug depletion and overuse, and enable the association of multiple actives combating H. pylori on several fronts. Nanoparticles and microparticles are successfully used to overcome the barriers of the oral route, physicochemical inconveniences, and lack of selectivity of current therapy. They have proven efficient in employing promising anti-H. pylori compounds whose limitation is oral route instability, such as some antibiotics and natural products. However, the current challenge is the applicability of these strategies in clinical practice. For this reason, strategies employing a rational design are necessary, including in the development of nano- and microsystems for the oral route.

3.
Crit Rev Microbiol ; 49(2): 214-230, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35634703

RESUMO

Infectious diseases are still public health problems. Microorganisms such as fungi, bacteria, viruses, and parasites are the main causing agents related to these diseases. In this context, the search for new effective strategies in prevention and/or treatment is considered essential, since current drugs often have side effects or end up, causing microbial resistance, making it a serious health problem. As an alternative to these limitations, nanotechnology has been widely used. The use of lipid-based drug delivery nanosystems (DDNs) has some advantages, such as biocompatibility, low toxicity, controlled release, the ability to carry both hydrophilic and lipophilic drugs, in addition to be easel scalable. Besides, as an improvement, studies involving the conjugation of signalling molecules on the surfaces of these nanocarriers can allow the target of certain tissues or cells. Thus, this review summarizes the performance of functionalized lipid-based DDNs for the treatment of infectious diseases caused by viruses, including SARS-CoV-2, bacteria, fungi, and parasites.


Assuntos
COVID-19 , Doenças Transmissíveis , Nanopartículas , Humanos , SARS-CoV-2 , Sistemas de Liberação de Medicamentos , Bactérias , Fungos , Doenças Transmissíveis/tratamento farmacológico , Lipídeos , Nanopartículas/uso terapêutico
4.
Med Mycol ; 61(2)2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36427066

RESUMO

Fungi are becoming increasingly resistant, especially the new strains. Therefore, this work developed nanoemulsions (NE) containing micafungin (MICA), in order to improve its action against infections caused by Candida auris. The NEs were composed of the surfactants polyoxyethylene (20) cetyl ether (Brij 58®)/soy phosphatidylcholine at 10%, sunflower oil/cholesterol at 10%, and 80% PBS. The NEs were characterized by Dynamic Light Scattering (DLS). For the microbiological in vitro evaluation the determination of the minimum inhibitory concentration (MIC), ergosterol/sorbitol, time kill and biofilms tests were performed. Additionally, the antifungal activity was also evaluated in a Galleria mellonella model. The same model was used in order to evaluate acute toxicity. The NE showed a size of ∼ 42.12 nm, a polydispersion index (PDI) of 0.289, and a zeta potential (ZP) of -3.86 mV. NEM had an average size of 41.29 nm, a PDI of 0.259, and a ZP of -4.71 mV. Finally, both nanoemulsions showed good stability in a storage period of 3 months. Although NEM did not show activity in planktonic cells, it exhibited action against biofilm and in the in vivo infection model. In the alternative in vivo model assay, it was possible to observe that both, NEM and free MICA at 0.2 mg/l, was effective against the infection, being that NEM presented a better action. Finally, NEM and free MICA showed no acute toxicity up to 4 mg/l. NEM showed the best activities in in vitro in mature antibiofilm and in alternative in vivo models in G. mellonella. Although, NEs showed to be attractive for MICA transport in the treatment of infections caused by C. auris in vitro and in vivo studies with G. mellonella, further studies should be carried out, in mice, for example.


Candida auris is a fungus that can cause infections in the human body. As it is a microorganism with a high potential for resistance, it is extremely important to develop new therapeutic alternatives. Thus, nanotechnology, the science that studies materials with extremely small sizes, can be considered a promising method in the treatment of these infections.


Assuntos
Antifúngicos , Ergosterol , Animais , Camundongos , Micafungina/farmacologia , Antifúngicos/farmacologia , Testes de Sensibilidade Microbiana/veterinária , Biofilmes
5.
Planta Med ; 88(5): 405-415, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33511621

RESUMO

Myrcia bella is a medicinal plant used for the treatment of diabetes, hemorrhages, and hypertension in Brazilian folk medicine. Considering that plant extracts are attractive sources of new drugs, the aim of the present study was to verify the influence of incorporating 70% hydroalcoholic of M. bella leaves in nanostructured lipid systems on the mutagenic and antifungal activities of the extract. In this work, we evaluated the antifungal potential of M. bella loaded on the microemulsion against Candida sp for minimum inhibitory concentration, using the microdilution technique. The system was composed of polyoxyethylene 20 cetyl ether and soybean phosphatidylcholine (10%), grape seed oil, cholesterol (10%: proportion 5/1), and purified water (80%). To investigate the mutagenic activity, the Ames test was used with the Salmonella Typhimurium tester strains. M. bella, either incorporated or free, showed an important antifungal effect against all tested strains. Moreover, the incorporation surprisingly inhibited the mutagenicity presented by the extract. The present study attests the antimicrobial properties of M. bella extract, contributing to the search for new natural products with biological activities and suggesting caution in its use for medicinal purposes. In addition, the results emphasize the importance of the use of nanotechnology associated with natural products as a strategy for the control of infections caused mainly by the genus Candida sp.


Assuntos
Myrtaceae , Plantas Medicinais , Antifúngicos/farmacologia , Mutagênicos , Extratos Vegetais/farmacologia
6.
Phytother Res ; 36(7): 2710-2745, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35643985

RESUMO

Fungal infections are one of the main public health problems, especially in immunocompromised patients, nosocomial environments, patients with chronic diseases, and transplant recipients. These diseases are increasingly frequent and lethal because the microorganism has a high capacity to acquire resistance to available therapy. The main resistance factors are the emergence of new strains and the uncontrolled use of antifungals. It is, therefore, important to develop new methods that contribute to combating fungal diseases in the clinical area. Natural products have considerable potential for the development of new drugs with antifungal activity, mainly due to their biocompatibility and low toxic effect. This promising antimicrobial activity of natural products is mainly due to the presence of flavonoids, terpenes, and quinones, which explains their antifungal potential. Pharmaceutical nanotechnology has been explored to enhance the delivery, selectivity, and clinical efficacy of these products. Nanotechnological systems provide a safe and selective environment for various substances, such as natural products, improving antifungal activity. However, further safety experiments (in vivo or clinical trials) need to be carried out to prove the therapeutic action of natural products, since they may have undesirable, toxic, and mutagenic effects. Therefore, this review article addresses the main nanotechnological methods using natural products for effective future treatment against the main fungal diseases.


Assuntos
Produtos Biológicos , Micoses , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Produtos Biológicos/farmacologia , Produtos Biológicos/uso terapêutico , Humanos , Micoses/tratamento farmacológico , Micoses/microbiologia , Nanomedicina , Terpenos/uso terapêutico
7.
Molecules ; 27(23)2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36500650

RESUMO

Commonly found colonizing the human microbiota, Candida albicans is a microorganism known for its ability to cause infections, mainly in the vulvovaginal region known as vulvovaginal candidiasis (VVC). This pathology is, in fact, one of the main C. albicans clinical manifestations, changing from a colonizer to a pathogen. The increase in VVC cases and limited antifungal therapy make C. albicans an increasingly frequent risk in women's lives, especially in immunocompromised patients, pregnant women and the elderly. Therefore, it is necessary to develop new therapeutic options, especially those involving natural products associated with nanotechnology, such as lycopene and mesoporous silica nanoparticles. From this perspective, this study sought to assess whether lycopene, mesoporous silica nanoparticles and their combination would be an attractive product for the treatment of this serious disease through microbiological in vitro tests and acute toxicity tests in an alternative in vivo model of Galleria mellonella. Although they did not show desirable antifungal activity for VVC therapy, the present study strongly encourages the use of mesoporous silica nanoparticles impregnated with lycopene for the treatment of other human pathologies, since the products evaluated here did not show toxicity in the in vivo test performed, being therefore, a topic to be further explored.


Assuntos
Candidíase Vulvovaginal , Fluconazol , Feminino , Humanos , Gravidez , Idoso , Candida , Dióxido de Silício/uso terapêutico , Licopeno/farmacologia , Licopeno/uso terapêutico , Candidíase Vulvovaginal/tratamento farmacológico , Candidíase Vulvovaginal/microbiologia , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Candida albicans , Testes de Sensibilidade Microbiana
8.
Crit Rev Microbiol ; 47(4): 435-460, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33725462

RESUMO

Due to the high adaptability of Helicobacter pylori and the low targeting specificity of the drugs normally used in pharmacological therapy, the strains are becoming increasingly resistant to these drugs, making it difficult to eradicate the infection. Thus, the search for new therapeutic approaches has been considered urgent. The incorporation of drugs in advanced drug delivery systems, such as nano and microparticles, would allow the improvement of the retention time in the stomach and the prolongation of drug release rates at the target site. Because of this, the present review article aims to highlight the use of micro and nanoparticles as important technological tools for the treatment of H. pylori infections, focussing on the main nanotechnological systems, including nanostructured lipid carriers, liposomes, nanoemulsion, metallic nanoparticles, and polymeric nanoparticles, as well as microtechnological systems such as gastroretentive dosage forms, among them mucoadhesive, magnetic and floating systems were highlighted.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Sistemas de Liberação de Medicamentos/métodos , Infecções por Helicobacter/tratamento farmacológico , Animais , Sistemas de Liberação de Medicamentos/instrumentação , Infecções por Helicobacter/microbiologia , Helicobacter pylori/efeitos dos fármacos , Helicobacter pylori/genética , Helicobacter pylori/fisiologia , Humanos , Nanopartículas/química
9.
Med Mycol ; 59(8): 821-827, 2021 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-33626136

RESUMO

The present study reports the performance of the pigment hypericin (HYP)-loaded poloxamer-based mucoadhesive in situ gelling liquid crystalline precursor system (LCPS) for the treatment of vulvovaginal candidiasis (VVC) in mice. LCPS composed of 40% of ethoxylated and propoxylated cetyl alcohol, 30% of oleic acid and cholesterol (7:1), 30% of a dispersion of 16% poloxamer 407 and 0.05% of HYP (HYP-LCPS) was prepared and characterized by polarized light microscopy (PLM), small-angle X-ray scattering (SAXS) and ex vivo permeation and retention studies across vaginal porcine mucosa were performed. In addition, the antifungal properties of the HYP-LCPS were evaluated in a murine in vivo model; for this, infected C57BL female mice groups were treated with both HYP in solution and HYP-LCPS, and after 6 days colony forming unit (CFU)/ml count was performed. PLM and SAXS confirmed that HYP-LCPS is a microemulsion situated in boundary transition region confirming its action as an LCPS. When in contact with simulated vaginal fluid, HYP-LCPS became rigid and exhibited maltase crosses and bragg peaks characteristics of lamellar phase. Ex vivo permeation and retention studies showed that HYP-LCPS provides a localized treatment on the superficial layers of porcine vaginal mucosa. HYP-LCPS induced a significant reduction in the number of CFU/ml in the mice; thus this formulation indicated it is as effective as a commercial dosage form. It was concluded that LCPS maintains the biological activity of HYP and provides an adequate drug delivery system for this lipophilic molecule at the vaginal mucosa, being a promising option in cases of VVC.


Assuntos
Antracenos/administração & dosagem , Antifúngicos/administração & dosagem , Candida albicans/efeitos dos fármacos , Candidíase Vulvovaginal/tratamento farmacológico , Perileno/análogos & derivados , Vagina/metabolismo , Adesivos/administração & dosagem , Animais , Antracenos/metabolismo , Antifúngicos/metabolismo , Cromatografia Líquida de Alta Pressão , Modelos Animais de Doenças , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Microscopia de Polarização , Mucosa/metabolismo , Mucosa/microbiologia , Mucosa/patologia , Perileno/administração & dosagem , Perileno/metabolismo , Poloxâmero/administração & dosagem , Radiossensibilizantes , Espalhamento a Baixo Ângulo , Suínos , Vagina/microbiologia , Vagina/patologia , Difração de Raios X
10.
Med Mycol ; 59(10): 946-957, 2021 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-34137857

RESUMO

Vulvovaginal candidiasis (CVV) is a condition in which signs and symptoms are related to inflammation caused by Candida spp infection. It is the second leading cause of vaginitis in the world, representing a public health problem. The present systematic review comes with the proposal of analyze and identify the available evidence on CVV prevalence in Brazil, pointing out its variability by regions. For this, a systematic literature review was carried out with meta-analysis of cross-sectional and cohort studies, following the Preferred Reporting Items for Systematic Reviews and Meta-Analyzes (PRISMA) guide recommendations, and was registered in the International Prospective Register of Systematic Reviews (PROSPERO 2020 CRD42020181695). The databases used for survey were LILACS, Scielo, Scopus, PUBMED, Web of Science and CINAHL. Fifteen studies were selected to estimate CVV prevalence in the Brazilian territory. South and Southeast regions have higher prevalences than the North and Northeast regions, no data were found for the Midwest region. The estimated prevalence for Brazil is 18%, however, it is suggested that this number is higher due to underreporting and the presence of asymptomatic cases. Therefore, new epidemiological studies are recommended throughout Brazil, to elucidate the profile of this disease in the country, in addition to assisting in the elaboration of an appropriate prevention plan by state. LAY SUMMARY: Data found in the literature regarding the epidemiological profile of vulvovaginal candidiasis in Brazil are obsolete and incomplete, so the present systematic review has the proposal to analyze and identify the evidence on vulvovaginal candidiasis prevalence in Brazil. The estimated prevalence is 18%; however, this number can be higher.


Assuntos
Candidíase Vulvovaginal , Candidíase , Animais , Brasil/epidemiologia , Candidíase/veterinária , Candidíase Vulvovaginal/epidemiologia , Candidíase Vulvovaginal/veterinária , Estudos Transversais , Feminino , Prevalência
11.
Crit Rev Microbiol ; 46(5): 508-547, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32795108

RESUMO

The crescent number of cases of candidiasis and the increase in the number of infections developed by non-albicans species and by multi-resistant strains has taken the attention of the scientific community, which has been searching for new therapeutic alternatives. Among the alternatives found the use of nanosystems for delivery of drugs already commercialized and new biomolecules have grown, in order to increase stability, solubility, optimize efficiency and reduce adverse effects. In view of the growing number of studies involving technological alternatives for the treatment of candidiasis, the present review came with the intention of gathering studies from the last two decades that used nanotechnology for the treatment of candidiasis, as well as analysing them critically and pointing out the future perspectives for their application with this purpose. Different studies were considered for the development of this review, addressing nanosystems such as metallic nanoparticles, mesoporous silica nanoparticles, polymeric nanoparticles, liposomes, nanoemulsion, microemulsion, solid lipid nanoparticle, nanostructured lipid carrier, lipidic nanocapsules and liquid crystals; and different clinical presentations of candidiasis. As a general overview, nanotechnology has proven to be an important ally for the treatment against the diversity of candidiasis found in the clinic, whether in increasing the effectiveness of commercialized drugs and reducing their adverse effects, as well as allowing exploring more effectively properties therapeutics of new biomolecules.


Assuntos
Antifúngicos/uso terapêutico , Candidíase/tratamento farmacológico , Nanopartículas/uso terapêutico , Animais , Antifúngicos/química , Antifúngicos/história , Candidíase/história , História do Século XX , História do Século XXI , Humanos , Nanopartículas/química , Nanopartículas/história , Nanotecnologia/história
12.
Mol Pharm ; 17(7): 2287-2298, 2020 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-32515970

RESUMO

Helicobacter pylori inhabits the gastric epithelium and can promote the development of gastric disorders, such as peptic ulcers, acute and chronic gastritis, mucosal lymphoid tissue (MALT), and gastric adenocarcinomas. To use nanotechnology as a tool to increase the antibacterial activity of silver I [Ag(I)] compounds, this study suggests a new strategy for H. pylori infections, which have hitherto been difficult to control. [Ag (PhTSC·HCl)2] (NO3)·H2O (compound 1) was synthesized, characterized, and loaded into polymeric nanoparticles (PN1). PN1 had been developed by nanoprecipitation with poly(ε-caprolactone) polymer and poloxamer 407 surfactant. System characterization assays showed that the PNs had adequate particle sizes and ζ-potentials. Transmission electron microscopy confirmed the formation of polymeric nanoparticles (PNs). Compound 1 had a minimum inhibitory concentration for H. pylori of 3.90 µg/mL, which was potentiated to 0.781 µg/mL after loading. The minimum bactericidal concentration of 7.81 µg/mL was potentiated 5-fold to 1.56 µg/mL in PN. Compound 1 loaded in PN1 displayed better activity for H. pylori biofilm formation and mature biofilm. PN1 reduced the toxicity of compound 1 to MRC-5 cells. Loading compound 1 into PN1 inhibited the mutagenicity of the free compound. In vivo, the system allowed survival of Galleria mellonella larvae at a concentration of 200 µg/mL. This is the first demonstration of the antibacterial activity of a silver complex enclosed in polymeric nanoparticles against H. pylori.


Assuntos
Antibacterianos/farmacologia , Infecções por Helicobacter/microbiologia , Helicobacter pylori/efeitos dos fármacos , Helicobacter pylori/fisiologia , Nanopartículas Metálicas/química , Polímeros/química , Compostos de Prata/farmacologia , Animais , Antibacterianos/química , Biofilmes/efeitos dos fármacos , Linhagem Celular , Sistemas de Liberação de Medicamentos/métodos , Liberação Controlada de Fármacos , Fibroblastos/efeitos dos fármacos , Infecções por Helicobacter/tratamento farmacológico , Humanos , Concentração Inibidora 50 , Larva/efeitos dos fármacos , Lepidópteros/efeitos dos fármacos , Camundongos , Testes de Sensibilidade Microbiana , Viabilidade Microbiana/efeitos dos fármacos , Tamanho da Partícula , Compostos de Prata/química
13.
Mol Pharm ; 15(10): 4491-4504, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30184431

RESUMO

Vulvovaginal candidiasis (VVC) is the most common infection caused by Candida albicans and greatly reduces the quality of life of women affected by it. Due to the ineffectiveness of conventional treatments, there is growing interest in research involving compounds of natural origin. One such compound is curcumin (CUR), which has been proven to be effective against this microorganism. However, some of CUR's physicochemical properties, especially its low aqueous solubility, make the therapeutic application of this compound difficult. Thus, the incorporation of CUR in mucoadhesive liquid crystalline systems (MLCSs) for vaginal administration may be an efficient strategy for the treatment of VVC. MLCSs are capable of potentiating the compound's action, releasing it in a controlled manner, and can enable longer exposure at the site of infection. In this study, MLCSs consisting of oleic acid and ergosterol 5:1 (w/w) as the oily phase, PPG-5-CETETH-20 as the surfactant, and a polymer dispersion of 1% chitosan as the aqueous phase, were developed for the application of CUR (MLCS-CUR) in VVC treatment. The formulations were characterized by polarized light microscopy (PLM), small-angle X-ray scattering (SAXS), oscillatory rheometry, continuous shear rheometry, texture profile analysis, and in vitro mucoadhesion. In addition, the antimicrobial activity was evaluated in vitro, and the effects on local fungal burden and cytokine profiles were investigated in a murine model of VVC. PLM and SAXS showed that the developed formulations presented a characteristic of a microemulsion. However, after the addition of artificial vaginal mucus (AVM), PLM showed that the formulations had structures similar to the "Maltese cross" characteristic of lamellar MLCS. Mucoadhesive test results showed an increase in the mucoadhesive strength of these formulations. Rheology analyses suggested long-lasting action of the formulation at the infected site. The in vitro antimicrobial activity assays suggested that CUR possesses antifungal activity against Candida albicans, determined after its incorporation into the MLCS. Further, MLCS-CUR was also more effective in vivo in the control of vaginal infection than treatment with fluconazole. Immunological assays showed that the ratio of pro-inflammatory (IL-1ß) to anti-inflammatory (TGF-ß) cytokines has decreased and that there is a reduction in the number of polymorphonuclear neutrophils recruited to the vaginal lumen, showing that treatment with MLCS-CUR was effective in modulating the inflammatory reaction associated with the infection. The results suggest that MLCSs could potentially be used in the treatment of VVC with CUR.


Assuntos
Candidíase Vulvovaginal/tratamento farmacológico , Curcumina/farmacologia , Curcumina/uso terapêutico , Cristais Líquidos/química , Antifúngicos/química , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Candida albicans/efeitos dos fármacos , Candida albicans/patogenicidade , Linhagem Celular , Curcumina/química , Liberação Controlada de Fármacos , Feminino , Humanos , Vagina/microbiologia
14.
Int J Mol Sci ; 17(8)2016 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-27556451

RESUMO

Herbal-loaded drug delivery nanotechnological systems have been extensively studied recently. The antimicrobial activity of medicinal plants has shown better pharmacological action when such plants are loaded into a drug delivery system than when they are not loaded. Syngonanthus nitens Bong. (Rhul.) belongs to the Eriocaulaceae family and presents antiulcerogenic, antioxidant, antibacterial, and antifungal activity. The aim of this study was to evaluate the antifungal activity of Syngonanthus nitens (S. nitens) extract that was not loaded (E) or loaded (SE) into a liquid crystal precursor system (S) for the treatment of vulvovaginal candidiasis (VVC) with Candida albicans. The minimal inhibitory concentration (MIC) was determined by the microdilution technique. Additionally, we performed hyphae inhibition and biofilm tests. Finally, experimental candidiasis was evaluated in in vivo models with Wistar female rats. The results showed effective antifungal activity after incorporation into S for all strains tested, with MICs ranging from 31.2 to 62.5 µg/mL. Microscopic observation of SE revealed an absence of filamentous cells 24 h of exposure to a concentration of 31.2 µg/mL. E demonstrated no effective action against biofilms, though SE showed inhibition against biofilms of all strains. In the in vivo experiment, SE was effective in the treatment of infection after only two days of treatment and was more effective than E and amphotericin B. The S. nitens is active against Candida albicans (C. albicans) and the antifungal potential is being enhanced after incorporation into liquid crystal precursor systems (LCPS). These findings represent a promising application of SE in the treatment of VVC.


Assuntos
Antifúngicos/uso terapêutico , Candidíase Vulvovaginal/tratamento farmacológico , Eriocaulaceae/química , Nanoestruturas/química , Extratos Vegetais/uso terapêutico , Animais , Antifúngicos/química , Candida albicans/efeitos dos fármacos , Candida albicans/patogenicidade , Candidíase Vulvovaginal/microbiologia , Sistemas de Liberação de Medicamentos/métodos , Feminino , Extratos Vegetais/química , Ratos , Ratos Wistar
15.
Int J Mol Sci ; 17(8)2016 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-27517903

RESUMO

BACKGROUND: The incidence of fungal infections, especially those caused by Candida yeasts, has increased over the last two decades. However, the indicated therapy for fungal control has limitations. Hence, medicinal plants have emerged as an alternative in the search for new antifungal agents as they present compounds, such as essential oils, with important biological effects. Published data demonstrate important pharmacological properties of the essential oil of Cymbopogon nardus (L.) Rendle; these include anti-tumor, anti-nociceptive, and antibacterial activities, and so an investigation of this compound against pathogenic fungi is interesting. OBJECTIVE: The aim of this study was to evaluate the chemical composition and biological potential of essential oil (EO) obtained from the leaves of C. nardus focusing on its antifungal profile against Candida species. METHODS: The EO was obtained by hydrodistillation and analyzed by gas chromatography-mass spectrometry (GC-MS). Testing of the antifungal potential against standard and clinical strains was performed by determining the minimal inhibitory concentration (MIC), time-kill, inhibition of Candida albicans hyphae growth, and inhibition of mature biofilms. Additionally, the cytotoxicity was investigated by the IC50 against HepG-2 (hepatic) and MRC-5 (fibroblast) cell lines. RESULTS: According to the chemical analysis, the main compounds of the EO were the oxygen-containing monoterpenes: citronellal, geranial, geraniol, citronellol, and neral. The results showed important antifungal potential for all strains tested with MIC values ranging from 250 to 1000 µg/mL, except for two clinical isolates of C. tropicalis (MIC > 1000 µg/mL). The time-kill assay showed that the EO inhibited the growth of the yeast and inhibited hyphal formation of C. albicans strains at concentrations ranging from 15.8 to 1000 µg/mL. Inhibition of mature biofilms of strains of C. albicans, C. krusei and C. parapsilosis occurred at a concentration of 10× MIC. The values of the IC50 for the EO were 96.6 µg/mL (HepG-2) and 33.1 µg/mL (MRC-5). CONCLUSION: As a major virulence mechanism is attributed to these types of infections, the EO is a promising compound to inhibit Candida species, especially considering its action against biofilm.


Assuntos
Antifúngicos/farmacologia , Candida/efeitos dos fármacos , Cymbopogon/química , Óleos Voláteis/farmacologia , Antifúngicos/química , Cromatografia Gasosa-Espectrometria de Massas , Hifas/efeitos dos fármacos , Concentração Inibidora 50 , Testes de Sensibilidade Microbiana , Óleos Voláteis/química
16.
Ann Clin Microbiol Antimicrob ; 13: 54, 2014 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-25406585

RESUMO

Throughout the genetic and physiological evolution of microorganisms, the microbiological sciences have been expanding the introduction of new therapeutic trials against microbial diseases. Special attention has been paid to the bacterium Helicobacter pylori, which induces gastric infections capable of causing damage, ranging from acute and chronic gastritis to the development of gastric cancer and death. The use of compounds with natural origins has gained popularity in scientific research focused on drug innovation against H. pylori because of their broad flexibility and low toxicity. The aim of this study was to describe the use of natural products against H. pylori in order to clarify important parameters for related fields. The study demonstrated the vast therapeutic possibilities for compounds originating from natural sources and revealed the need for innovations from future investigations to expand the therapeutic arsenal in the fight against H. pylori infection.


Assuntos
Antibacterianos/farmacologia , Produtos Biológicos/farmacologia , Helicobacter pylori/efeitos dos fármacos , Humanos
17.
Pathogens ; 13(7)2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-39057777

RESUMO

Candida auris is an emerging, multidrug-resistant yeast that causes systemic infections, mainly in hospitalized or immunosuppressed patients. This pathogen has a high mortality and morbidity rate. This study aims to evaluate the antifungal potential of micafungin (MICA) encapsulated in a nanoemulsion (NEM) against four clades of C. auris and other non-C. auris species. The antifungal potential of MICA and NEM was evaluated by determining mature biofilm inhibition (0.78-50 µg/mL). The antifungal activities of MICA and NEM (5.92 mg/Kg) were evaluated using an in vivo model of Galleria mellonella. The results showed that NEM intensified the antibiofilm action of MICA, especially in 48 h mature biofilms. In vivo results displayed a higher effectiveness of NEM against all clades of C. auris tested, inhibiting the fungal load in the hemolymph and tissues of G. mellonella with a difference of 3 log10. In addition, C. auris infection caused granulomas surrounded by hemocytes, mainly at the lower and upper ends. Conversely, C. albicans developed pseudohyphae, biofilms, filaments, and chlamydospores. In conclusion, encapsulation of MICA in a nanoemulsion enhances its antifungal activity against mature biofilms of C. auris. This strategy may be considered a therapeutic approach for the control of infections and the dissemination of this new global health threat.

18.
Eur J Pharm Biopharm ; 199: 114280, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38588828

RESUMO

Helicobacter pylori (H. pylori) is a microorganism directly linked to severe clinical conditions affecting the stomach. The virulence factors and its ability to form biofilms increase resistance to conventional antibiotics, growing the need for new substances and strategies for the treatment of H. pylori infection. The trans-resveratrol (RESV), a bioactive polyphenol from natural sources, has a potential activity against this gastric pathogen. Here, Chitosan nanoparticles (NP) containing RESV (RESV-NP) were developed for H. pylori management. The RESV-NP were prepared using the ionic gelation method and characterized by Dynamic Light Scattering (DLS), Nanoparticle Tracking Analysis (NTA) and, Cryogenic Transmission Electron Microscopy (Cryo - TEM). The encapsulation efficiency (EE) and in vitro release rate of RESV were quantified using high-performance liquid chromatography (HPLC). RESV-NP performance against H. pylori was evaluated by the quantification of the minimum inhibitory/bactericidal concentrations (MIC/MBC), time to kill, alterations in H. pylori morphology in its planktonic form, effects against H. pylori biofilm and in an in vitro infection model. RESV-NP cytotoxicity was evaluated against AGS and MKN-74 cell lines and by hemolysis assay. Acute toxicity was tested using Galleria mellonella model assays. RESV-NP showed a spherical shape, size of 145.3 ± 24.7 nm, polydispersity index (PDI) of 0.28 ± 0.008, and zeta potential (ZP) of + 16.9 ± 1.81 mV in DLS, while particle concentration was 3.12 x 1011 NP/mL (NTA). RESV-NP EE was 72 %, with full release within the first 5 min. In microbiological assays, RESV-NP presented a MIC/MBC of 3.9 µg/mL, a time to kill of 24 h for complete eradication of H. pylori. At a concentration of 2xMIC (7.8 µg/mL), RESV-NP completely eradicated the H. pylori biofilm, and in an in vitro infection model, RESV-NP (4xMIC - 15.6 µg/mL) showed a significant decrease in bacterial load (1 Log10CFU/mL) when compared to the H. pylori J99 control. In addition, they did not demonstrate a toxic character at MIC concentration for both cell lines. The use of the RESV-NP with mucoadhesion profile is an interesting strategy for oral administration of substances targeting gastric disorders, linked to H. pylori infections.


Assuntos
Antibacterianos , Biofilmes , Quitosana , Infecções por Helicobacter , Helicobacter pylori , Testes de Sensibilidade Microbiana , Nanopartículas , Resveratrol , Resveratrol/administração & dosagem , Resveratrol/farmacologia , Helicobacter pylori/efeitos dos fármacos , Quitosana/química , Nanopartículas/química , Infecções por Helicobacter/tratamento farmacológico , Infecções por Helicobacter/microbiologia , Biofilmes/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/administração & dosagem , Humanos , Animais , Portadores de Fármacos/química , Liberação Controlada de Fármacos , Estilbenos/farmacologia , Estilbenos/administração & dosagem , Estilbenos/química , Tamanho da Partícula
19.
J Fungi (Basel) ; 10(4)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38667924

RESUMO

The Candida auris species is a multidrug-resistant yeast capable of causing systemic and lethal infections. Its virulence and increase in outbreaks are a global concern, especially in hospitals where outbreaks are more recurrent. In many cases, monotherapy is not effective, and drug combinations are opted for. However, resistance to antifungals has increased over the years. In view of this, nanoemulsions (NEs) may represent a nanotechnology strategy in the development of new therapeutic alternatives. Therefore, this study developed a co-encapsulated nanoemulsion with amphotericin B (AmB) and micafungin (MICA) (NEMA) for the control of infections caused by C. auris. NEs were developed in previous studies. Briefly, the NEs were composed of a mixture of 10% sunflower oil and cholesterol as the oil phase (5:1), 10% Polyoxyethylene (20) cetyl ether (Brij® 58) and soy phosphatidylcholine as surfactant/co-surfactant (2:1), and 80% PBS as the aqueous phase. The in vivo assay used BALB/c mice weighing between 25 and 28 g that were immunosuppressed (CEUA/FCF/CAr n° 29/2021) and infected with Candida auris CDC B11903. The in vivo results show the surprising potentiate of the antifungal activity of the co-encapsulated drugs in NE, preventing yeast from causing infection in the lung and thymus. Biochemical assays showed a higher concentration of liver and kidney enzymes under treatment with AmB and MICAmB. In conclusion, this combination of drugs to combat the infection caused by C. auris can be considered an efficient therapeutic option, and nanoemulsions contribute to therapeutic potentiate, proving to be a promising new alternative.

20.
Beilstein J Nanotechnol ; 15: 104-114, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38264062

RESUMO

Plant-based insecticides offer advantages such as negligible residual effects, reduced risks to both humans and the environment, and immunity to resistance issues that plague conventional chemicals. However, the practical use of monoterpenes in insect control has been hampered by challenges including their poor solubility and stability in aqueous environments. In recent years, the application of nanotechnology-based formulations, specifically nanoemulsions, has emerged as a prospective strategy to surmount these obstacles. In this study, we developed and characterized nanoemulsions based on cymene and myrcene and assessed their toxicity both in vitro using human keratinocytes (HaCAT) cells and in an in vivo model involving Galleria mellonella larvae. Additionally, we investigated the insecticidal efficacy of monoterpenes against the mosquito Aedes aegypti, the primary dengue vector, via larval bioassay. Employing a low-energy approach, we successfully generated nanoemulsions. The cymene-based nanoemulsion exhibited a hydrodynamic diameter of approximately 98 nm and a zeta potential of -25 mV. The myrcene-based nanoemulsion displayed a hydrodynamic diameter of 118 nm and a zeta potential of -20 mV. Notably, both nanoemulsions demonstrated stability over 60 days, accompanied by controlled release properties and low toxicity towards HaCAT cells and Galleria mellonella larvae. Moreover, the nanoemulsions exhibited significant lethality against third-instar Aedes aegypti larvae at a concentration of 50 mg/L. In conclusion, the utilization of nanoemulsions encapsulating cymene and myrcene presents a promising avenue for overcoming the limitations associated with poor solubility and stability of monoterpenes. This study sheds light on the potential of the nanoemulsions as effective and environmentally friendly insecticides in the ongoing battle against mosquito-borne diseases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA