Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Plant J ; 105(3): 754-770, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33164279

RESUMO

Manihot esculenta (cassava) is a root crop originating from South America that is a major staple in the tropics, including in marginal environments. This study focused on South American and African germplasm and investigated the genetic architecture of hydrogen cyanide (HCN), a major component of root quality. HCN, representing total cyanogenic glucosides, is a plant defense component against herbivory but is also toxic for human consumption. We genotyped 3354 landraces and modern breeding lines originating from 26 Brazilian states and 1389 individuals were phenotypically characterized across multi-year trials for HCN. All plant material was subjected to high-density genotyping using genotyping by sequencing. We performed genome-wide association mapping to characterize the genetic architecture and gene mapping of HCN. Field experiments revealed strong broad- and narrow-sense trait heritability (0.82 and 0.41, respectively). Two major loci were identified, encoding for an ATPase and a MATE protein, and contributing up to 7 and 30% of the HCN concentration in roots, respectively. We developed diagnostic markers for breeding applications, validated trait architecture consistency in African germplasm and investigated further evidence for the domestication of sweet and bitter cassava. Fine genomic characterization revealed: (i) the major role played by vacuolar transporters in regulating HCN content; (ii) the co-domestication of sweet and bitter cassava major alleles are dependent upon geographical zone; and (iii) the major loci allele for high HCN in M. esculenta Crantz seems to originate from its ancestor, M. esculenta subsp. flabellifolia. Taken together, these findings expand our insights into cyanogenic glucosides in cassava roots and its glycosylated derivatives in plants.


Assuntos
Glicosídeos/genética , Manihot/genética , África , Alelos , Brasil , Cromossomos de Plantas , Genética Populacional , Estudo de Associação Genômica Ampla , Glicosídeos/metabolismo , Cianeto de Hidrogênio/metabolismo , América Latina , Manihot/metabolismo , Mutação , Filogenia , Melhoramento Vegetal/métodos , Proteínas de Plantas/genética , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Polimorfismo de Nucleotídeo Único , Paladar
2.
Plant Mol Biol ; 109(3): 177-191, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33604743

RESUMO

KEY MESSAGE: We demystify recent advances in genome assemblies for the heterozygous staple crop cassava (Manihot esculenta), and highlight key cassava genomic resources. Cassava, Manihot esculenta Crantz, is a crop of societal and agricultural importance in tropical regions around the world. Genomics provides a platform for accelerated improvement of cassava's nutritional and agronomic traits, as well as for illuminating aspects of cassava's history including its path towards domestication. The highly heterozygous nature of the cassava genome is widely recognized. However, the full extent and context of this heterozygosity has been difficult to reveal because of technological limitations within genome sequencing. Only recently, with several new long-read sequencing technologies coming online, has the genomics community been able to tackle some similarly difficult genomes. In light of these recent advances, we provide this review to document the current status of the cassava genome and genomic resources and provide a perspective on what to look forward to in the coming years.


Assuntos
Manihot , Mapeamento Cromossômico , Domesticação , Genômica , Manihot/genética
3.
Plant Mol Biol ; 109(3): 195-213, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32734418

RESUMO

KEY MESSAGE: More than 40 QTLs associated with 14 stress-related, quality and agro-morphological traits were identified. A catalogue of favourable SNP markers for MAS and a list of candidate genes are provided. Cassava (Manihot esculenta) is one of the most important starchy root crops in the tropics due to its adaptation to marginal environments. Genetic progress in this clonally propagated crop can be accelerated through the discovery of markers and candidate genes that could be used in cassava breeding programs. We carried out a genome-wide association study (GWAS) using a panel of 5130 clones developed at the International Institute of Tropical Agriculture-Nigeria. The population was genotyped at more than 100,000 SNP markers via genotyping-by-sequencing (GBS). Genomic regions underlying genetic variation for 14 traits classified broadly into four categories: biotic stress (cassava mosaic disease and cassava green mite severity); quality (dry matter content and carotenoid content) and plant agronomy (harvest index and plant type) were investigated. We also included several agro-morphological traits related to leaves, stems and roots with high heritability. In total, 41 significant associations were uncovered. While some of the identified loci matched with those previously reported, we present additional association signals for the traits. We provide a catalogue of favourable alleles at the most significant SNP for each trait-locus combination and candidate genes occurring within the GWAS hits. These resources provide a foundation for the development of markers that could be used in cassava breeding programs and candidate genes for functional validation.


Assuntos
Manihot , Estudo de Associação Genômica Ampla , Manihot/genética , Fenótipo , Melhoramento Vegetal , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas/genética
4.
Theor Appl Genet ; 134(5): 1343-1362, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33575821

RESUMO

KEY MESSAGE: Brazilian cassava diversity was characterized through population genetics and clustering approaches, highlighting contrasted genetic groups and spatial genetic differentiation. Cassava (Manihot esculenta Crantz) is a major staple root crop of the tropics, originating from the Amazonian region. In this study, 3354 cassava landraces and modern breeding lines from the Embrapa Cassava Germplasm Bank (CGB) were characterized. All individuals were subjected to genotyping-by-sequencing (GBS), identifying 27,045 single-nucleotide polymorphisms (SNPs). Identity-by-state and population structure analyses revealed a unique set of 1536 individuals and 10 distinct genetic groups with heterogeneous linkage disequilibrium (LD). On this basis, a density of 1300-4700 SNP markers were selected for large-effect quantitative trait loci (QTL) detection. Identified genetic groups were further characterized for population genetics parameters including minor allele frequency (MAF), observed heterozygosity [Formula: see text], effective population size estimate [Formula: see text]) and polymorphism information content (PIC). Selection footprints and introgressions of M. glaziovii were detected. Spatial population structure analysis revealed five ancestral populations related to distinct Brazilian ecoregions. Estimation of historical relationships among identified populations suggests an early population split from Amazonian to Atlantic forest and Caatinga ecoregions and active gene flows. This study provides a thorough genetic characterization of ex situ germplasm resources from cassava's center of origin, South America, with results shedding light on Brazilian cassava characteristics and its biogeographical landscape. These findings support and facilitate the use of genetic resources in modern breeding programs including implementation of association mapping and genomic selection strategies.


Assuntos
Cromossomos de Plantas/genética , Genética Populacional , Genoma de Planta , Manihot/genética , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Banco de Sementes/estatística & dados numéricos , Mapeamento Cromossômico/métodos , Domesticação , Desequilíbrio de Ligação , Manihot/crescimento & desenvolvimento , Manihot/metabolismo , Melhoramento Vegetal
5.
Bioinformatics ; 35(20): 4147-4155, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-30903186

RESUMO

MOTIVATION: Modern genomic breeding methods rely heavily on very large amounts of phenotyping and genotyping data, presenting new challenges in effective data management and integration. Recently, the size and complexity of datasets have increased significantly, with the result that data are often stored on multiple systems. As analyses of interest increasingly require aggregation of datasets from diverse sources, data exchange between disparate systems becomes a challenge. RESULTS: To facilitate interoperability among breeding applications, we present the public plant Breeding Application Programming Interface (BrAPI). BrAPI is a standardized web service API specification. The development of BrAPI is a collaborative, community-based initiative involving a growing global community of over a hundred participants representing several dozen institutions and companies. Development of such a standard is recognized as critical to a number of important large breeding system initiatives as a foundational technology. The focus of the first version of the API is on providing services for connecting systems and retrieving basic breeding data including germplasm, study, observation, and marker data. A number of BrAPI-enabled applications, termed BrAPPs, have been written, that take advantage of the emerging support of BrAPI by many databases. AVAILABILITY AND IMPLEMENTATION: More information on BrAPI, including links to the specification, test suites, BrAPPs, and sample implementations is available at https://brapi.org/. The BrAPI specification and the developer tools are provided as free and open source.


Assuntos
Melhoramento Vegetal , Software , Interface Usuário-Computador , Genômica
7.
New Phytol ; 215(2): 624-641, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28585324

RESUMO

Plant metabolites are important to world food security due to their roles in crop yield and nutritional quality. Here we report the metabolic profile of 300 tomato accessions (Solanum lycopersicum and related wild species) by quantifying 60 primary and secondary metabolites, including volatile organic compounds, over a period of 2 yr. Metabolite content and genetic inheritance of metabolites varied broadly, both within and between different genetic groups. Using genotype information gained from 10 000 single nucleotide polymorphism markers, we performed a metabolite genome-wide association mapping (GWAS) study. We identified 79 associations influencing 13 primary and 19 secondary metabolites with large effects at high resolution. Four genome regions were detected, highlighting clusters of associations controlling the variation of several metabolites. Local linkage disequilibrium analysis and allele mining identified possible candidate genes which may modulate the content of metabolites that are of significant importance for human diet and fruit consumption. We precisely characterized two associations involved in fruit acidity and phenylpropanoid volatile production. Taken together, this study reveals complex and distinct metabolite regulation in tomato subspecies and demonstrates that GWAS is a powerful tool for gene-metabolite annotation and identification, pathways elucidation, and further crop improvement.


Assuntos
Polimorfismo de Nucleotídeo Único , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Compostos Orgânicos Voláteis/metabolismo , Frutas/genética , Estudo de Associação Genômica Ampla , Desequilíbrio de Ligação , Malatos/metabolismo , Álcool Feniletílico/metabolismo , Filogenia , Locos de Características Quantitativas , Metabolismo Secundário , Paladar
8.
Theor Appl Genet ; 130(5): 875-889, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28188333

RESUMO

KEY MESSAGE: A panel of 300 tomato accessions including breeding materials was built and characterized with >11,000 SNP. A population structure in six subgroups was identified. Strong heterogeneity in linkage disequilibrium and recombination landscape among groups and chromosomes was shown. GWAS identified several associations for fruit weight, earliness and plant growth. Genome-wide association studies (GWAS) have become a method of choice in quantitative trait dissection. First limited to highly polymorphic and outcrossing species, it is now applied in horticultural crops, notably in tomato. Until now GWAS in tomato has been performed on panels of heirloom and wild accessions. Using modern breeding materials would be of direct interest for breeding purpose. To implement GWAS on a large panel of 300 tomato accessions including 168 breeding lines, this study assessed the genetic diversity and linkage disequilibrium decay and revealed the population structure and performed GWA experiment. Genetic diversity and population structure analyses were based on molecular markers (>11,000 SNP) covering the whole genome. Six genetic subgroups were revealed and associated to traits of agronomical interest, such as fruit weight and disease resistance. Estimates of linkage disequilibrium highlighted the heterogeneity of its decay among genetic subgroups. Haplotype definition allowed a fine characterization of the groups and their recombination landscape revealing the patterns of admixture along the genome. Selection footprints showed results in congruence with introgressions. Taken together, all these elements refined our knowledge of the genetic material included in this panel and allowed the identification of several associations for fruit weight, plant growth and earliness, deciphering the genetic architecture of these complex traits and identifying several new loci useful for tomato breeding.


Assuntos
Estudos de Associação Genética , Melhoramento Vegetal , Locos de Características Quantitativas , Solanum lycopersicum/genética , Mapeamento Cromossômico , DNA de Plantas/genética , Frequência do Gene , Genótipo , Haplótipos , Desequilíbrio de Ligação , Fenótipo , Polimorfismo de Nucleotídeo Único
9.
BMC Genomics ; 16: 257, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25880392

RESUMO

BACKGROUND: Domestication modifies the genomic variation of species. Quantifying this variation provides insights into the domestication process, facilitates the management of resources used by breeders and germplasm centers, and enables the design of experiments to associate traits with genes. We described and analyzed the genetic diversity of 1,008 tomato accessions including Solanum lycopersicum var. lycopersicum (SLL), S. lycopersicum var. cerasiforme (SLC), and S. pimpinellifolium (SP) that were genotyped using 7,720 SNPs. Additionally, we explored the allelic frequency of six loci affecting fruit weight and shape to infer patterns of selection. RESULTS: Our results revealed a pattern of variation that strongly supported a two-step domestication process, occasional hybridization in the wild, and differentiation through human selection. These interpretations were consistent with the observed allele frequencies for the six loci affecting fruit weight and shape. Fruit weight was strongly selected in SLC in the Andean region of Ecuador and Northern Peru prior to the domestication of tomato in Mesoamerica. Alleles affecting fruit shape were differentially selected among SLL genetic subgroups. Our results also clarified the biological status of SLC. True SLC was phylogenetically positioned between SP and SLL and its fruit morphology was diverse. SLC and "cherry tomato" are not synonymous terms. The morphologically-based term "cherry tomato" included some SLC, contemporary varieties, as well as many admixtures between SP and SLL. Contemporary SLL showed a moderate increase in nucleotide diversity, when compared with vintage groups. CONCLUSIONS: This study presents a broad and detailed representation of the genomic variation in tomato. Tomato domestication seems to have followed a two step-process; a first domestication in South America and a second step in Mesoamerica. The distribution of fruit weight and shape alleles supports that domestication of SLC occurred in the Andean region. Our results also clarify the biological status of SLC as true phylogenetic group within tomato. We detect Ecuadorian and Peruvian accessions that may represent a pool of unexplored variation that could be of interest for crop improvement.


Assuntos
Polimorfismo de Nucleotídeo Único , Solanum lycopersicum/genética , Cruzamento , Evolução Molecular , Frutas/genética , Frequência do Gene , Genoma de Planta , Genômica , Heterozigoto
10.
Plant Physiol ; 165(3): 1120-1132, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24894148

RESUMO

Genome-wide association studies have been successful in identifying genes involved in polygenic traits and are valuable for crop improvement. Tomato (Solanum lycopersicum) is a major crop and is highly appreciated worldwide for its health value. We used a core collection of 163 tomato accessions composed of S. lycopersicum, S. lycopersicum var cerasiforme, and Solanum pimpinellifolium to map loci controlling variation in fruit metabolites. Fruits were phenotyped for a broad range of metabolites, including amino acids, sugars, and ascorbate. In parallel, the accessions were genotyped with 5,995 single-nucleotide polymorphism markers spread over the whole genome. Genome-wide association analysis was conducted on a large set of metabolic traits that were stable over 2 years using a multilocus mixed model as a general method for mapping complex traits in structured populations and applied to tomato. We detected a total of 44 loci that were significantly associated with a total of 19 traits, including sucrose, ascorbate, malate, and citrate levels. These results not only provide a list of candidate loci to be functionally validated but also a powerful analytical approach for finding genetic variants that can be directly used for crop improvement and deciphering the genetic architecture of complex traits.

11.
BMC Plant Biol ; 14: 279, 2014 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-25325924

RESUMO

BACKGROUND: Domestication and selection of crops have notably reshaped fruit morphology. With its large phenotypic diversity, tomato (Solanum lycopersicum) illustrates this evolutive trend. Genes involved in flower meristem development are known to regulate also fruit morphology. To decipher the genetic variation underlying tomato fruit morphology, we assessed the nucleotide diversity and selection footprints of candidate genes involved in flower and fruit development and performed genome-wide association studies. RESULTS: Thirty candidate genes were selected according to their similarity with genes involved in meristem development or their known causal function in Arabidopsis thaliana. In tomato, these genes and flanking regions were sequenced in a core collection of 96 accessions (including cultivated, cherry-type and wild relative accessions) maximizing the molecular diversity, using the Roche 454 technology. A total amount of 17 Mb was sequenced allowing the discovery of 6,106 single nucleotide polymorphisms (SNPs). The annotation of the 30 gene regions identified 231 exons carrying 517 SNPs. Subsequently, the nucleotide diversity (π) and the neutral evolution of each region were compared against genome-wide values within the collection, using a SNP array carrying 7,667 SNPs mainly distributed in coding sequences.About half of the genes revealed footprints of selection and polymorphisms putatively involved in fruit size variation by showing negative Tajima's D and nucleotide diversity reduction in cultivated tomato compared to its wild relative. Among the candidates, FW2.2 and BAM1 sequences revealed selection footprints within their promoter regions suggesting their potential involvement in their regulation. Two associations co-localized with previously identified loci: LC (locule number) and Ovate (fruit shape). CONCLUSION: Compared to whole genome genotypic data, a drastic reduction of nucleotide diversity was shown for several candidate genes. Strong selection patterns were identified in 15 candidates highlighting the critical role of meristem maintenance genes as well as the impact of domestication on candidates. The study highlighted a set of polymorphisms putatively important in the evolution of these genes.


Assuntos
Flores/genética , Variação Genética/genética , Meristema/genética , Seleção Genética/genética , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Genoma de Planta/genética , Solanum lycopersicum/classificação , Meristema/metabolismo , Polimorfismo de Nucleotídeo Único/genética
12.
BMC Genomics ; 14: 791, 2013 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-24228636

RESUMO

BACKGROUND: One of the goals of genomics is to identify the genetic loci responsible for variation in phenotypic traits. The completion of the tomato genome sequence and recent advances in DNA sequencing technology allow for in-depth characterization of genetic variation present in the tomato genome. Like many self-pollinated crops, cultivated tomato accessions show a low molecular but high phenotypic diversity. Here we describe the whole-genome resequencing of eight accessions (four cherry-type and four large fruited lines) chosen to represent a large range of intra-specific variability and the identification and annotation of novel polymorphisms. RESULTS: The eight genomes were sequenced using the GAII Illumina platform. Comparison of the sequences with the reference genome yielded more than 4 million single nucleotide polymorphisms (SNPs). This number varied from 80,000 to 1.5 million according to the accessions. Almost 128,000 InDels were detected. The distribution of SNPs and InDels across and within chromosomes was highly heterogeneous revealing introgressions from wild species and the mosaic structure of the genomes of the cherry tomato accessions. In-depth annotation of the polymorphisms identified more than 16,000 unique non-synonymous SNPs. In addition 1,686 putative copy-number variations (CNVs) were identified. CONCLUSIONS: This study represents the first whole genome resequencing experiment in cultivated tomato. Substantial genetic differences exist between the sequenced tomato accessions and the reference sequence. The heterogeneous distribution of the polymorphisms may be related to introgressions that occurred during domestication or breeding. The annotated SNPs, InDels and CNVs identified in this resequencing study will serve as useful genetic tools, and as candidate polymorphisms in the search for phenotype-altering DNA variations.


Assuntos
Genoma de Planta , Solanum lycopersicum/genética , Cruzamento , Mapeamento Cromossômico , Cromossomos de Plantas/genética , Variações do Número de Cópias de DNA , Evolução Molecular , Heterozigoto , Mutação INDEL , Anotação de Sequência Molecular , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA
13.
Front Plant Sci ; 13: 1016170, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36311140

RESUMO

Provitamin A biofortification and increased dry matter content are important breeding targets in cassava improvement programs worldwide. Biofortified varieties contribute to the alleviation of provitamin A deficiency, a leading cause of preventable blindness common among pre-school children and pregnant women in developing countries particularly Africa. Dry matter content is a major component of dry yield and thus underlies overall variety performance and acceptability by growers, processors, and consumers. Single nucleotide polymorphism (SNP) markers linked to these traits have recently been discovered through several genome-wide association studies but have not been deployed for routine marker-assisted selection (MAS). This is due to the lack of useful information on markers' performances in diverse genetic backgrounds. To overcome this bottleneck, technical and biological validation of the loci associated with increased carotenoid content and dry matter content were carried out using populations independent of the marker discovery population. In the present study, seven previously identified markers for these traits were converted to a robust set of uniplex allele-specific polymerase chain reaction (PCR) assays and validated in two independent pre-breeding and breeding populations. These assays were efficient in discriminating marker genotypic classes and had an average call rate greater than 98%. A high correlation was observed between the predicted and observed carotenoid content as inferred by root yellowness intensity in the breeding (r = 0.92) and pre-breeding (r = 0.95) populations. On the other hand, dry matter content-markers had moderately low predictive accuracy in both populations (r< 0.40) due to the more quantitative nature of the trait. This work confirmed the markers' effectiveness in multiple backgrounds, therefore, further strengthening their value in cassava biofortification to ensure nutritional security as well as dry matter content productivity. Our study provides a framework to guide future marker validation, thus leading to the more routine use of markers in MAS in cassava improvement programs.

14.
G3 (Bethesda) ; 12(7)2022 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-35385099

RESUMO

Modern breeding methods integrate next-generation sequencing and phenomics to identify plants with the best characteristics and greatest genetic merit for use as parents in subsequent breeding cycles to ultimately create improved cultivars able to sustain high adoption rates by farmers. This data-driven approach hinges on strong foundations in data management, quality control, and analytics. Of crucial importance is a central database able to (1) track breeding materials, (2) store experimental evaluations, (3) record phenotypic measurements using consistent ontologies, (4) store genotypic information, and (5) implement algorithms for analysis, prediction, and selection decisions. Because of the complexity of the breeding process, breeding databases also tend to be complex, difficult, and expensive to implement and maintain. Here, we present a breeding database system, Breedbase (https://breedbase.org/, last accessed 4/18/2022). Originally initiated as Cassavabase (https://cassavabase.org/, last accessed 4/18/2022) with the NextGen Cassava project (https://www.nextgencassava.org/, last accessed 4/18/2022), and later developed into a crop-agnostic system, it is presently used by dozens of different crops and projects. The system is web based and is available as open source software. It is available on GitHub (https://github.com/solgenomics/, last accessed 4/18/2022) and packaged in a Docker image for deployment (https://hub.docker.com/u/breedbase, last accessed 4/18/2022). The Breedbase system enables breeding programs to better manage and leverage their data for decision making within a fully integrated digital ecosystem.


Assuntos
Ecossistema , Melhoramento Vegetal , Algoritmos , Produtos Agrícolas/genética , Software
15.
Sci Rep ; 11(1): 23520, 2021 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-34876620

RESUMO

Cassava, a food security crop in Africa, is grown throughout the tropics and subtropics. Although cassava can provide high productivity in suboptimal conditions, the yield in Africa is substantially lower than in other geographies. The yield gap is attributable to many challenges faced by cassava in Africa, including susceptibility to diseases and poor soil conditions. In this study, we carried out 3'RNA sequencing on 150 accessions from the National Crops Resources Research Institute, Uganda for 5 tissue types, providing population-based transcriptomics resources to the research community in a web-based queryable cassava expression atlas. Differential expression and weighted gene co-expression network analysis were performed to detect 8820 significantly differentially expressed genes (DEGs), revealing similarity in expression patterns between tissue types and the clustering of detected DEGs into 18 gene modules. As a confirmation of data quality, differential expression and pathway analysis targeting cassava mosaic disease (CMD) identified 27 genes observed in the plant-pathogen interaction pathway, several previously identified CMD resistance genes, and two peroxidase family proteins different from the CMD2 gene. Present research work represents a novel resource towards understanding complex traits at expression and molecular levels for the development of resistant and high-yielding cassava varieties, as exemplified with CMD.


Assuntos
Resistência à Doença/genética , Expressão Gênica/genética , Manihot/genética , Produtos Agrícolas/genética , Interações Hospedeiro-Patógeno/genética , Fenótipo , Doenças das Plantas/genética , Transcriptoma/genética , Uganda
16.
Front Plant Sci ; 12: 742638, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34956254

RESUMO

Genomic prediction (GP) offers great opportunities for accelerated genetic gains by optimizing the breeding pipeline. One of the key factors to be considered is how the training populations (TP) are composed in terms of genetic improvement, kinship/origin, and their impacts on GP. Hydrogen cyanide content (HCN) is a determinant trait to guide cassava's products usage and processing. This work aimed to achieve the following objectives: (i) evaluate the feasibility of using cross-country (CC) GP between germplasm's of Embrapa Mandioca e Fruticultura (Embrapa, Brazil) and The International Institute of Tropical Agriculture (IITA, Nigeria) for HCN; (ii) provide an assessment of population structure for the joint dataset; (iii) estimate the genetic parameters based on single nucleotide polymorphisms (SNPs) and a haplotype-approach. Datasets of HCN from Embrapa and IITA breeding programs were analyzed, separately and jointly, with 1,230, 590, and 1,820 clones, respectively. After quality control, ∼14K SNPs were used for GP. The genomic estimated breeding values (GEBVs) were predicted based on SNP effects from analyses with TP composed of the following: (i) Embrapa genotypic and phenotypic data, (ii) IITA genotypic and phenotypic data, and (iii) the joint datasets. Comparisons on GEBVs' estimation were made considering the hypothetical situation of not having the phenotypic characterization for a set of clones for a certain research institute/country and might need to use the markers' effects that were trained with data from other research institutes/country's germplasm to estimate their clones' GEBV. Fixation index (FST) among the genetic groups identified within the joint dataset ranged from 0.002 to 0.091. The joint dataset provided an improved accuracy (0.8-0.85) compared to the prediction accuracy of either germplasm's sources individually (0.51-0.67). CC GP proved to have potential use under the present study's scenario, the correlation between GEBVs predicted with TP from Embrapa and IITA was 0.55 for Embrapa's germplasm, whereas for IITA's it was 0.1. This seems to be among the first attempts to evaluate the CC GP in plants. As such, a lot of useful new information was provided on the subject, which can guide new research on this very important and emerging field.

17.
PLoS One ; 15(11): e0240059, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33175872

RESUMO

Modern breeding programs routinely use genome-wide information for selecting individuals to advance. The large volumes of genotypic information required present a challenge for data storage and query efficiency. Major use cases require genotyping data to be linked with trait phenotyping data. In contrast to phenotyping data that are often stored in relational database schemas, next-generation genotyping data are traditionally stored in non-relational storage systems due to their extremely large scope. This study presents a novel data model implemented in Breedbase (https://breedbase.org/) for uniting relational phenotyping data and non-relational genotyping data within the open-source PostgreSQL database engine. Breedbase is an open-source, web-database designed to manage all of a breeder's informatics needs: management of field experiments, phenotypic and genotypic data collection and storage, and statistical analyses. The genotyping data is stored in a PostgreSQL data-type known as binary JavaScript Object Notation (JSONb), where the JSON structures closely follow the Variant Call Format (VCF) data model. The Breedbase genotyping data model can handle different ploidy levels, structural variants, and any genotype encoded in VCF. JSONb is both compressed and indexed, resulting in a space and time efficient system. Furthermore, file caching maximizes data retrieval performance. Integration of all breeding data within the Chado database schema retains referential integrity that may be lost when genotyping and phenotyping data are stored in separate systems. Benchmarking demonstrates that the system is fast enough for computation of a genomic relationship matrix (GRM) and genome wide association study (GWAS) for datasets involving 1,325 diploid Zea mays, 314 triploid Musa acuminata, and 924 diploid Manihot esculenta samples genotyped with 955,690, 142,119, and 287,952 genotype-by-sequencing (GBS) markers, respectively.


Assuntos
Bases de Dados Genéticas , Manihot/genética , Musa/genética , Zea mays/genética , Análise de Dados , Genótipo , Melhoramento Vegetal , Plantas
18.
Crop Sci ; 60(3): 1450-1461, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32742003

RESUMO

Understanding the genetic relationships among farmer-preferred cassava (Manihot esculenta Crantz) varieties is indispensable to genetic improvement efforts. In this study, we present a genetic analysis of 547 samples of cassava grown by 192 smallholder farmers, which were sampled at random within four districts in Uganda. We genotyped these samples at 287,952 single nucleotide polymorphisms using genotyping-by-sequencing and co-analyzed them with 349 cassava samples from the national breeding program in Uganda. The samples collected from smallholders consisted of 86 genetically unique varieties, as assessed using a genetic distance-based approach. Of these varieties, most were cultivated in only one district (30 in Kibaale, 19 in Masindi, 14 in Arua, and three in Apac), and only three were cultivated across all districts. The genetic differentiation we observed among farming districts in Uganda (mean fixation index [F ST] = .003) is similar to divergence observed within other countries. Despite the fact that none of the breeding lines were directly observed in farmer fields, genetic divergence between the populations was low (F ST = .020). Interestingly, we detected the presence of introgressions from the wild relative M. glaziovii Müll. Arg. on chromosomes 1 and 4, which implies ancestry with cassava breeding lines. Given the apparently similar pool of alleles in the breeding germplasm, it is likely that breeders have the raw genetic material they require to match the farmer-preferred trait combinations necessary for adoption. Our study highlights the importance of understanding the genetic makeup of cassava currently grown by smallholder farmers and relative to that of plant breeding germplasm.

19.
Sci Rep ; 10(1): 13191, 2020 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-32764649

RESUMO

Understanding the diversity and genetic relationships among and within crop germplasm is invaluable for genetic improvement. This study assessed genetic diversity in a panel of 173 D. rotundata accessions using joint analysis for 23 morphological traits and 136,429 SNP markers from the whole-genome resequencing platform. Various diversity matrices and clustering methods were evaluated for a comprehensive characterization of genetic diversity in white Guinea yam from West Africa at phenotypic and molecular levels. The translation of the different diversity matrices from the phenotypic and genomic information into distinct groups varied with the hierarchal clustering methods used. Gower distance matrix based on phenotypic data and identity by state (IBS) distance matrix based on SNP data with the UPGMA clustering method found the best fit to dissect the genetic relationship in current set materials. However, the grouping pattern was inconsistent (r = - 0.05) between the morphological and molecular distance matrices due to the non-overlapping information between the two data types. Joint analysis for the phenotypic and molecular information maximized a comprehensive estimate of the actual diversity in the evaluated materials. The results from our study provide valuable insights for measuring quantitative genetic variability for breeding and genetic studies in yam and other root and tuber crops.


Assuntos
Dioscorea/genética , Marcadores Genéticos/genética , Variação Genética , Fenótipo
20.
Patterns (N Y) ; 1(7): 100105, 2020 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-33205138

RESUMO

Heterogeneous and multidisciplinary data generated by research on sustainable global agriculture and agrifood systems requires quality data labeling or annotation in order to be interoperable. As recommended by the FAIR principles, data, labels, and metadata must use controlled vocabularies and ontologies that are popular in the knowledge domain and commonly used by the community. Despite the existence of robust ontologies in the Life Sciences, there is currently no comprehensive full set of ontologies recommended for data annotation across agricultural research disciplines. In this paper, we discuss the added value of the Ontologies Community of Practice (CoP) of the CGIAR Platform for Big Data in Agriculture for harnessing relevant expertise in ontology development and identifying innovative solutions that support quality data annotation. The Ontologies CoP stimulates knowledge sharing among stakeholders, such as researchers, data managers, domain experts, experts in ontology design, and platform development teams.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA