Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
J Cell Biol ; 177(4): 625-36, 2007 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-17517961

RESUMO

Release of apoptogenic proteins such as cytochrome c from mitochondria is regulated by pro- and anti-apoptotic Bcl-2 family proteins, with pro-apoptotic BH3-only proteins activating Bax and Bak. Current models assume that apoptosis induction occurs via the binding and inactivation of anti-apoptotic Bcl-2 proteins by BH3-only proteins or by direct binding to Bax. Here, we analyze apoptosis induction by the BH3-only protein Bim(S). Regulated expression of Bim(S) in epithelial cells was followed by its rapid mitochondrial translocation and mitochondrial membrane insertion in the absence of detectable binding to anti-apoptotic Bcl-2 proteins. This caused mitochondrial recruitment and activation of Bax and apoptosis. Mutational analysis of Bim(S) showed that mitochondrial targeting, but not binding to Bcl-2 or Mcl-1, was required for apoptosis induction. In yeast, Bim(S) enhanced the killing activity of Bax in the absence of anti-apoptotic Bcl-2 proteins. Thus, cell death induction by a BH3-only protein can occur through a process that is independent of anti-apoptotic Bcl-2 proteins but requires mitochondrial targeting.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Apoptose/fisiologia , Proteínas de Membrana/metabolismo , Mitocôndrias/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Animais , Proteínas Reguladoras de Apoptose/biossíntese , Proteínas Reguladoras de Apoptose/fisiologia , Proteína 11 Semelhante a Bcl-2 , Citosol/metabolismo , Células HeLa , Humanos , Proteínas de Membrana/biossíntese , Proteínas de Membrana/fisiologia , Camundongos , Membranas Mitocondriais/metabolismo , Ligação Proteica , Transporte Proteico , Proteínas Proto-Oncogênicas/biossíntese , Proteínas Proto-Oncogênicas/fisiologia , Proteínas Proto-Oncogênicas c-bcl-2/fisiologia , Proteína X Associada a bcl-2/metabolismo
2.
Proc Natl Acad Sci U S A ; 106(16): 6656-61, 2009 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-19366667

RESUMO

YidC/Oxa/Alb3 family proteins catalyze the insertion of integral membrane proteins in bacteria, mitochondria, and chloroplasts, respectively. Unlike gram-negative organisms, gram-positive bacteria express 2 paralogs of this family, YidC1/SpoIIIJ and YidC2/YgjG. In Streptococcus mutans, deletion of yidC2 results in a stress-sensitive phenotype similar to that of mutants lacking the signal recognition particle (SRP) protein translocation pathway, while deletion of yidC1 has a less severe phenotype. In contrast to eukaryotes and gram-negative bacteria, SRP-deficient mutants are viable in S. mutans; however, double SRP-yidC2 mutants are severely compromised. Thus, YidC2 may enable loss of the SRP by playing an independent but overlapping role in cotranslational protein insertion into the membrane. This is reminiscent of the situation in mitochondria that lack an SRP pathway and where Oxa1 facilitates cotranslational membrane protein insertion by binding directly to translation-active ribosomes. Here, we show that OXA1 complements a lack of yidC2 in S. mutans. YidC2 also functions reciprocally in oxa1-deficient Saccharomyces cerevisiae mutants and mediates the cotranslational insertion of mitochondrial translation products into the inner membrane. YidC2, like Oxa1, contains a positively charged C-terminal extension and associates with translating ribosomes. Our results are consistent with a gene-duplication event in gram-positive bacteria that enabled the specialization of a YidC isoform that mediates cotranslational activity independent of an SRP pathway.


Assuntos
Proteínas de Bactérias/genética , Complexo IV da Cadeia de Transporte de Elétrons/genética , Duplicação Gênica , Proteínas Mitocondriais/genética , Proteínas Nucleares/genética , Biossíntese de Proteínas , Saccharomyces cerevisiae/genética , Streptococcus mutans/genética , Teste de Complementação Genética , Mitocôndrias/metabolismo , Modelos Genéticos , Mutação/genética , Filogenia , Ligação Proteica , Ribossomos/metabolismo , Saccharomyces cerevisiae/citologia , Fatores de Tempo
3.
Methods Mol Biol ; 457: 95-112, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-19066021

RESUMO

Mitochondria are essential organelles of eukaryotic cells. The biogenesis of mitochondria depends on the coordinated function of two separate genetic systems: one in the nucleus and one in the organelle. The study of mitochondria requires the analysis of both genetic systems and their protein products. In this chapter, we focus on the translation and sorting of mitochondrially encoded proteins into the mitochondrial inner membrane in the baker's yeast Saccharomyces cerevisiae. The starting point is the labeling of these proteins, followed by some of the methods developed to investigate their topology and membrane incorporation. The methods described here can be applied also to the study of other aspects of organelle biogenesis such as folding, assembly, and degradation of proteins.


Assuntos
Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Biologia Molecular/métodos , Biossíntese de Proteínas , Saccharomyces cerevisiae/metabolismo , Carbonatos , Centrifugação , Eletroforese em Gel de Poliacrilamida , Endopeptidase K/metabolismo , Proteínas de Membrana/isolamento & purificação , Membranas Mitocondriais/metabolismo , Proteínas Mitocondriais/isolamento & purificação , Osmose , Transporte Proteico , Corantes de Rosanilina , Saccharomyces cerevisiae/crescimento & desenvolvimento , Coloração e Rotulagem
4.
FEBS J ; 274(21): 5704-13, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17922846

RESUMO

Members of the YidC/Oxa1/Alb3 protein family function in the biogenesis of membrane proteins in bacteria, mitochondria and chloroplasts. In Escherichia coli, YidC plays a key role in the integration and assembly of many inner membrane proteins. Interestingly, YidC functions both in concert with the Sec-translocon and as a separate insertase independent of the translocon. Mitochondria of higher eukaryotes contain two distant homologues of YidC: Oxa1 and Cox18/Oxa2. Oxa1 is required for the insertion of membrane proteins into the mitochondrial inner membrane. Cox18/Oxa2 plays a poorly defined role in the biogenesis of the cytochrome c oxidase complex. Employing a genetic complementation approach by expressing the conserved region of yeast Cox18 in E. coli, we show here that Cox18 is able to complement the essential Sec-independent function of YidC. This identifies Cox18 as a bona fide member of the YidC/Oxa1/Alb3 family.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfatases/metabolismo , Proteínas de Bactérias/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Teste de Complementação Genética , Proteínas Mitocondriais/metabolismo , Modelos Biológicos , Proteínas Nucleares/metabolismo , Canais de Translocação SEC , Proteínas SecA
5.
J Plant Physiol ; 176: 180-91, 2015 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-25637827

RESUMO

Senescence is the last step of leaf development in the life span of an annual plant. Senescence can be induced prematurely by treating leaf tissues with jasmonic acid methyl ester (methyl jasmonate, MeJA). During both senescence programmes, drastic changes occur at the biochemical, cellular and ultra-structural levels that were compared here for primary leaves of barley (Hordeum vulgare L.). Our findings indicate that both types of senescence are similar with respect to the morphological changes including the loss of chlorophyll, disintegration of thylakoids, and formation of plastoglobules. However, the time elapsed for reaching senescence completion was different and ranged from 7 to 8 days for artificially senescing, MeJA-treated plants to 7-8 weeks for naturally senescing plants. Pulse-labelling studies along with RNA and protein gel blot analyses showed differential changes in the expression of both plastid and nuclear genes coding for photosynthetic proteins. Several unique messenger products accumulated in naturally and artificially senescing, MeJA-treated leaves. Detailed expression and crosslinking studies revealed that pheophorbide a oxygenase (PAO), a previously implicated key enzyme of chlorophyll breakdown, is most likely not rate-limiting for chlorophyll destruction under both senescence conditions. Metabolite profiling identified differential changes in the composition of carotenoid derivatives and prenyl-lipids to occur in naturally senescing and artificially senescing plants that underscored the differences between both senescence programmes.


Assuntos
Regulação da Expressão Gênica de Plantas , Hordeum/crescimento & desenvolvimento , Hordeum/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/genética , Acetatos/farmacologia , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/genética , Clorofila/metabolismo , Ciclopentanos/farmacologia , Genes de Plantas , Hordeum/efeitos dos fármacos , Oxigenases/metabolismo , Oxilipinas/farmacologia , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/ultraestrutura , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Oxigênio Singlete/metabolismo , Tilacoides/efeitos dos fármacos , Tilacoides/metabolismo , Tilacoides/ultraestrutura , beta Caroteno/metabolismo
6.
Genome Biol Evol ; 7(5): 1235-51, 2015 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-25861818

RESUMO

The five macromolecular complexes that jointly mediate oxidative phosphorylation (OXPHOS) in mitochondria consist of many more subunits than those of bacteria, yet, it remains unclear by which evolutionary mechanism(s) these novel subunits were recruited. Even less well understood is the structural evolution of mitochondrial ribosomes (mitoribosomes): while it was long thought that their exceptionally high protein content would physically compensate for their uniquely low amount of ribosomal RNA (rRNA), this hypothesis has been refuted by structural studies. Here, we present a cryo-electron microscopy structure of the 73S mitoribosome from Neurospora crassa, together with genomic and proteomic analyses of mitoribosome composition across the eukaryotic domain. Surprisingly, our findings reveal that both structurally and compositionally, mitoribosomes have evolved very similarly to mitochondrial OXPHOS complexes via two distinct phases: A constructive phase that mainly acted early in eukaryote evolution, resulting in the recruitment of altogether approximately 75 novel subunits, and a reductive phase that acted during metazoan evolution, resulting in gradual length-reduction of mitochondrially encoded rRNAs and OXPHOS proteins. Both phases can be well explained by the accumulation of (slightly) deleterious mutations and deletions, respectively, in mitochondrially encoded rRNAs and OXPHOS proteins. We argue that the main role of the newly recruited (nuclear encoded) ribosomal- and OXPHOS proteins is to provide structural compensation to the mutationally destabilized mitochondrially encoded components. While the newly recruited proteins probably provide a selective advantage owing to their compensatory nature, and while their presence may have opened evolutionary pathways toward novel mitochondrion-specific functions, we emphasize that the initial events that resulted in their recruitment was nonadaptive in nature. Our framework is supported by population genetic studies, and it can explain the complete structural evolution of mitochondrial ribosomes and OXPHOS complexes, as well as many observed functions of individual proteins.


Assuntos
Evolução Molecular , Mitocôndrias/genética , Proteínas Mitocondriais/genética , Ribossomos/química , Genes Mitocondriais , Mutação , Neurospora crassa/genética , Fosforilação Oxidativa , Subunidades Proteicas/genética , RNA Ribossômico/química , Proteínas Ribossômicas/química , Ribossomos/ultraestrutura
7.
Mol Biol Cell ; 21(12): 1937-44, 2010 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-20427570

RESUMO

Biogenesis of respiratory chain complexes depends on the expression of mitochondrial-encoded subunits. Their synthesis occurs on membrane-associated ribosomes and is probably coupled to their membrane insertion. Defects in expression of mitochondrial translation products are among the major causes of mitochondrial disorders. Mdm38 is related to Letm1, a protein affected in Wolf-Hirschhorn syndrome patients. Like Mba1 and Oxa1, Mdm38 is an inner membrane protein that interacts with ribosomes and is involved in respiratory chain biogenesis. We find that simultaneous loss of Mba1 and Mdm38 causes severe synthetic defects in the biogenesis of cytochrome reductase and cytochrome oxidase. These defects are not due to a compromised membrane binding of ribosomes but the consequence of a mis-regulation in the synthesis of Cox1 and cytochrome b. Cox1 expression is restored by replacing Cox1-specific regulatory regions in the mRNA. We conclude, that Mdm38 and Mba1 exhibit overlapping regulatory functions in translation of selected mitochondrial mRNAs.


Assuntos
Proteínas de Membrana/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Biossíntese de Proteínas , Ribossomos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Aerobiose/efeitos dos fármacos , Citocromos b/biossíntese , Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/biossíntese , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Homeostase/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Modelos Biológicos , Mutação/genética , Nigericina/farmacologia , Ligação Proteica/efeitos dos fármacos , Biossíntese de Proteínas/efeitos dos fármacos , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/crescimento & desenvolvimento
8.
J Biol Chem ; 283(25): 17139-46, 2008 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-18442968

RESUMO

Recently, the bacterial elongation factor LepA was identified as critical for the accuracy of in vitro translation reactions. Extremely well conserved homologues of LepA are present throughout bacteria and eukaryotes, but the physiological relevance of these proteins is unclear. Here we show that the yeast counterpart of LepA, Guf1, is located in the mitochondrial matrix and tightly associated with the inner membrane. It binds to mitochondrial ribosomes in a GTP-dependent manner. Mutants lacking Guf1 show cold- and heat-sensitive growth defects on non-fermentable carbon sources that are especially pronounced under nutrient-limiting conditions. The cold sensitivity is explained by diminished rates of protein synthesis at low temperatures. At elevated temperatures, Guf1-deficient mutants exhibit defects in the assembly of cytochrome oxidase, suggesting that the polypeptides produced are not functional. Moreover, Guf1 mutants exhibit synthetic growth defects with mutations of the protein insertase Oxa1. These observations show a critical role for Guf1 in vivo. The observed defects in Guf1-deficient mitochondria are consistent with a function of Guf1 as a fidelity factor of mitochondrial protein synthesis.


Assuntos
Membrana Celular/enzimologia , GTP Fosfo-Hidrolases/metabolismo , Regulação Fúngica da Expressão Gênica , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiologia , Saccharomyces cerevisiae/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Proteínas de Escherichia coli/metabolismo , GTP Fosfo-Hidrolases/química , GTP Fosfo-Hidrolases/fisiologia , Humanos , Modelos Biológicos , Proteínas Nucleares/metabolismo , Fatores de Iniciação de Peptídeos , Peptídeos/química , Filogenia , Proteínas de Saccharomyces cerevisiae/química , Especificidade da Espécie , Temperatura , Fatores de Elongação da Transcrição/metabolismo
9.
EMBO J ; 25(8): 1603-10, 2006 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-16601683

RESUMO

The genome of mitochondria encodes a small number of very hydrophobic polypeptides that are inserted into the inner membrane in a cotranslational reaction. The molecular process by which mitochondrial ribosomes are recruited to the membrane is poorly understood. Here, we show that the inner membrane protein Mba1 binds to the large subunit of mitochondrial ribosomes. It thereby cooperates with the C-terminal ribosome-binding domain of Oxa1, which is a central component of the insertion machinery of the inner membrane. In the absence of both Mba1 and the C-terminus of Oxa1, mitochondrial translation products fail to be properly inserted into the inner membrane and serve as substrates of the matrix chaperone Hsp70. We propose that Mba1 functions as a ribosome receptor that cooperates with Oxa1 in the positioning of the ribosome exit site to the insertion machinery of the inner membrane.


Assuntos
Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Membrana/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Proteínas Nucleares/metabolismo , Ribossomos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/genética , Proteínas de Choque Térmico HSP70/genética , Proteínas de Membrana/genética , Membranas Mitocondriais/metabolismo , Proteínas Mitocondriais/genética , Mutação , Proteínas Nucleares/genética , Ligação Proteica , Estrutura Terciária de Proteína , Ribossomos/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA