Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
J Pharmacol Exp Ther ; 384(3): 331-342, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36241203

RESUMO

Vascular endothelial growth factor (VEGF) and angiopoietin (ANG)-2 have complementary roles in angiogenesis and promote an immunosuppressive tumor microenvironment. It is anticipated that the combination of VEGF and ANG2 blockade could provide superior activity to the blockade of either pathway alone and that the addition of VEGF/ANG2 inhibition to an anti-programmed cell death protein-1 (PD-1) antibody could change the tumor microenvironment to support T-cell-mediated tumor cytotoxicity. Here, we describe the pharmacologic and antitumor activity of BI 836880, a humanized bispecific nanobody comprising two single-variable domains blocking VEGF and ANG2, and an additional module for half-life extension in vivo. BI 836880 demonstrated high affinity and selectivity for human VEGF-A and ANG2, resulting in inhibition of the downstream signaling of VEGF/ANG2 and a decrease in endothelial cell proliferation and survival. In vivo, BI 836880 exhibited significant antitumor activity in all patient-derived xenograft models tested, showing significantly greater tumor growth inhibition (TGI) than bevacizumab (VEGF inhibition) and AMG386 (ANG1/2 inhibition) in a range of models. In a Lewis lung carcinoma syngeneic tumor model, the combination of PD-1 inhibition with VEGF inhibition showed superior efficacy versus the blockade of either pathway alone. TGI was further increased with the addition of ANG2 inhibition to VEGF/PD-1 blockade. VEGF/ANG2 inhibition had a strong antiangiogenic effect. Our data suggest that the blockade of VEGF and ANG2 with BI 836880 may offer improved antitumor activity versus the blockade of either pathway alone and that combining VEGF/ANG2 inhibition with PD-1 blockade can further enhance antitumor effects. SIGNIFICANCE STATEMENT: Vascular endothelial growth factor (VEGF) and angiopoietin (ANG)-2 play key roles in angiogenesis and have an immunosuppressive effect in the tumor microenvironment. This study shows that BI 836880, a bispecific nanobody targeting VEGF and ANG2, demonstrates substantial antitumor activity in preclinical models. Combining VEGF/ANG2 inhibition with the blockade of the PD-1 pathway can further improve antitumor activity.


Assuntos
Neoplasias , Fator A de Crescimento do Endotélio Vascular , Humanos , Fator A de Crescimento do Endotélio Vascular/metabolismo , Angiopoietina-2/metabolismo , Receptor de Morte Celular Programada 1 , Fatores de Crescimento do Endotélio Vascular/uso terapêutico , Inibidores da Angiogênese , Neoplasias/tratamento farmacológico , Morte Celular , Angiopoietina-1 , Microambiente Tumoral
2.
Br J Cancer ; 127(3): 577-586, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35444289

RESUMO

BACKGROUND: BET inhibitors have been tested in several clinical trials where, despite encouraging preclinical results, substantial clinical benefit in monotherapy remains limited. This work illustrates the translational challenges and reports new data around the novel BET inhibitor, BI 894999. At clinically achievable concentrations, mechanistic studies were carried out to study pathway modulation and rational drug combinations. METHODS: BRD-NUT fusions are oncogenic drivers in NUT carcinoma (NC). The effects of BI 894999 on proliferation, chromatin binding and pathway modulation were studied in NC in vitro. These studies were complemented by efficacy studies either as a single agent or in combination with the clinical p300/CBP inhibitor CCS1477. RESULTS: Based on the modelling of preclinical and clinical data, we proposed and implemented a new clinical scheduling regimen. This led to plasma levels sufficient to fully dislodge BRD-NUT from chromatin and to sustained and pronounced pharmacodynamic (PD) modulation of HEXIM1 and HIST2H2BF. Platelet counts in patient blood samples were improved compared to previous schedules. Rational combination studies of BI 894999 performed at clinically meaningful concentrations led to tumour regressions in all NC xenograft models tested. CONCLUSIONS: BI 894999 holds significant potential as a combination drug and CCS1477 p300/CBP inhibitor is a promising partner for future clinical trials.


Assuntos
Antineoplásicos , Derivados de Benzeno , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Cromatina , Inibidores Enzimáticos , Humanos , Proteínas de Ligação a RNA/genética , Fatores de Transcrição/genética
3.
J Pharmacol Exp Ther ; 364(3): 494-503, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29263244

RESUMO

The triple-angiokinase inhibitor nintedanib is an orally available, potent, and selective inhibitor of tumor angiogenesis by blocking the tyrosine kinase activities of vascular endothelial growth factor receptor (VEGFR) 1-3, platelet-derived growth factor receptor (PDGFR)-α and -ß, and fibroblast growth factor receptor (FGFR) 1-3. Nintedanib has received regulatory approval as second-line treatment of adenocarcinoma non-small cell lung cancer (NSCLC), in combination with docetaxel. In addition, nintedanib has been approved for the treatment of idiopathic lung fibrosis. Here we report the results from a broad kinase screen that identified additional kinases as targets for nintedanib in the low nanomolar range. Several of these kinases are known to be mutated or overexpressed and are involved in tumor development (discoidin domain receptor family, member 1 and 2, tropomyosin receptor kinase A (TRKA) and C, rearranged during transfection proto-oncogene [RET proto oncogene]), as well as in fibrotic diseases (e.g., DDRs). In tumor cell lines displaying molecular alterations in potential nintedanib targets, the inhibitor demonstrates direct antiproliferative effects: in the NSCLC cell line NCI-H1703 carrying a PDGFRα amplification (ampl.); the gastric cancer cell line KatoIII and the breast cancer cell line MFM223, both driven by a FGFR2 amplification; AN3CA (endometrial carcinoma) bearing a mutated FGFR2; the acute myeloid leukemia cell lines MOLM-13 and MV-4-11-B with FLT3 mutations; and the NSCLC adenocarcinoma LC-2/ad harboring a CCDC6-RET fusion. Potent kinase inhibition does not, however, strictly translate into antiproliferative activity, as demonstrated in the TRKA-dependent cell lines CUTO-3 and KM-12. Importantly, nintedanib treatment of NCI-H1703 tumor xenografts triggered effective tumor shrinkage, indicating a direct effect on the tumor cells in addition to the antiangiogenic effect on the tumor stroma. These findings will be instructive in guiding future genome-based clinical trials of nintedanib.


Assuntos
Antineoplásicos/farmacologia , Indóis/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas Tirosina Quinases/antagonistas & inibidores , Proteínas Tirosina Quinases/genética , Animais , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Humanos , Neoplasias Pulmonares/patologia , Camundongos , Mutação , Oncogenes/genética , Proto-Oncogene Mas , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Clin Cancer Res ; 30(8): 1582-1594, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38330145

RESUMO

PURPOSE: Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKI) serve as the standard first-line therapy for EGFR-mutated non-small cell lung cancer (NSCLC). Despite the sustained clinical benefits achieved through optimal EGFR-TKI treatments, including the third-generation EGFR-TKI osimertinib, resistance inevitably develops. Currently, there are no targeted therapeutic options available postprogression on osimertinib. Here, we assessed the preclinical efficacy of BI-4732, a novel fourth-generation EGFR-TKI, using patient-derived preclinical models reflecting various clinical scenarios. EXPERIMENTAL DESIGN: The antitumor activity of BI-4732 was evaluated using Ba/F3 cells and patient-derived cell/organoid/xenograft models with diverse EGFR mutations. Intracranial antitumor activity of BI-4732 was evaluated in a brain-metastasis mouse model. RESULTS: We demonstrated the remarkable antitumor efficacy of BI-4732 as a single agent in various patient-derived models with EGFR_C797S-mediated osimertinib resistance. Moreover, BI-4732 exhibited activity comparable to osimertinib in inhibiting EGFR-activating (E19del and L858R) and T790M mutations. In a combination treatment strategy with osimertinib, BI-4732 exhibited a synergistic effect at significantly lower concentrations than those used in monotherapy. Importantly, BI-4732 displayed potent antitumor activity in an intracranial model, with low efflux at the blood-brain barrier. CONCLUSIONS: Our findings highlight the potential of BI-4732, a selective EGFR-TKI with high blood-brain barrier penetration, targeting a broad range of EGFR mutations, including C797S, warranting clinical development.


Assuntos
Acrilamidas , Carcinoma Pulmonar de Células não Pequenas , Indóis , Neoplasias Pulmonares , Pirimidinas , Camundongos , Animais , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Receptores ErbB/genética , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Mutação , Resistencia a Medicamentos Antineoplásicos/genética , Compostos de Anilina
5.
Cancer Discov ; 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39248702

RESUMO

Mutations in HER2 occur in 2-4% of non-small cell lung cancer (NSCLC) and confer poor prognosis. ERBB-targeting tyrosine kinase inhibitors, approved for treating other HER2-dependent cancers, are ineffective in HER2 mutant NSCLC due to dose-limiting toxicities or suboptimal potency. We report the discovery of zongertinib (BI 1810631), a covalent HER2 inhibitor. Zongertinib potently and selectively blocks HER2, while sparing EGFR, and inhibits the growth of cells dependent on HER2 oncogenic driver events, including HER2-dependent human cancer cells resistant to trastuzumab deruxtecan. Zongertinib displays potent anti-tumor activity in HER2-dependent human NSCLC xenograft models and enhances the activities of antibody-drug conjugates and KRASG12C inhibitors, without causing obvious toxicities. The preclinical efficacy of zongertinib translates in objective responses in patients with HER2-dependent tumors, including cholangiocarcinoma (SDC4-NRG1 fusion) and breast cancer (V777L HER2 mutation) thus supporting the ongoing clinical development of zongertinib.

6.
Blood ; 118(15): 4159-68, 2011 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-21795744

RESUMO

The tetraspanin CD37 is widely expressed in B-cell malignancies and represents an attractive target for immunotherapy with mAbs. We have chimerized a high-affinity mouse Ab to CD37 and engineered the CH2 domain for improved binding to human Fcγ receptors. The resulting mAb 37.1 showed high intrinsic proapoptotic activity on malignant B cells accompanied by homotypic aggregation. Furthermore, the Ab-mediated high Ab-dependent cell-mediated cytotoxicity (ADCC) on lymphoma and primary CLL cells. mAb 37.1 strongly depleted normal B cells as well as spiked B-lymphoma cells in blood samples from healthy donors as well as malignant B cells in blood from CLL patients. In all assays, mAb 37.1 was superior to rituximab in terms of potency and maximal cell lysis. A single dose of mAb CD37.1 administered to human CD37-transgenic mice resulted in a reversible, dose-dependent reduction of peripheral B cells. In a Ramos mouse model of human B-cell lymphoma, administration of mAb 37.1 strongly suppressed tumor growth. Finally, a surrogate Fc-engineered Ab to macaque CD37, with in vitro proapoptotic and ADCC activities very similar to those of mAb 37.1, induced dose-dependent, reversible B-cell depletion in cynomolgus monkeys. In conclusion, the remarkable preclinical pharmacodynamic and antitumor effects of mAb 37.1 warrant clinical development for B-cell malignancies.


Assuntos
Anticorpos Monoclonais Humanizados/farmacologia , Citotoxicidade Celular Dependente de Anticorpos/efeitos dos fármacos , Antineoplásicos/farmacologia , Linfócitos B/imunologia , Fragmentos Fc das Imunoglobulinas/farmacologia , Linfoma de Células B/tratamento farmacológico , Tetraspaninas/antagonistas & inibidores , Animais , Anticorpos Monoclonais Humanizados/genética , Anticorpos Monoclonais Humanizados/imunologia , Anticorpos Monoclonais Murinos/imunologia , Anticorpos Monoclonais Murinos/farmacologia , Afinidade de Anticorpos/genética , Afinidade de Anticorpos/imunologia , Citotoxicidade Celular Dependente de Anticorpos/imunologia , Antígenos de Neoplasias/imunologia , Antineoplásicos/imunologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Fragmentos Fc das Imunoglobulinas/genética , Fragmentos Fc das Imunoglobulinas/imunologia , Depleção Linfocítica , Linfoma de Células B/imunologia , Macaca fascicularis , Camundongos , Camundongos Transgênicos , Receptores de IgG/imunologia , Rituximab , Tetraspaninas/imunologia
7.
Nat Cancer ; 3(7): 821-836, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35883003

RESUMO

Oncogenic alterations in human epidermal growth factor receptor 2 (HER2) occur in approximately 2% of patients with non-small cell lung cancer and predominantly affect the tyrosine kinase domain and cluster in exon 20 of the ERBB2 gene. Most clinical-grade tyrosine kinase inhibitors are limited by either insufficient selectivity against wild-type (WT) epidermal growth factor receptor (EGFR), which is a major cause of dose-limiting toxicity or by potency against HER2 exon 20 mutant variants. Here we report the discovery of covalent tyrosine kinase inhibitors that potently inhibit HER2 exon 20 mutants while sparing WT EGFR, which reduce tumor cell survival and proliferation in vitro and result in regressions in preclinical xenograft models of HER2 exon 20 mutant non-small cell lung cancer, concomitant with inhibition of downstream HER2 signaling. Our results suggest that HER2 exon 20 insertion-driven tumors can be effectively treated by a potent and highly selective HER2 inhibitor while sparing WT EGFR, paving the way for clinical translation.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Receptores ErbB/genética , Éxons/genética , Genes erbB-2 , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Receptor ErbB-2/genética
8.
Curr Biol ; 17(4): 316-22, 2007 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-17291758

RESUMO

Fine-mapping of the cell-division cycle, notably the identification of mitotic kinase signaling pathways, provides novel opportunities for cancer-drug discovery. As a key regulator of multiple steps during mitotic progression across eukaryotic species, the serine/threonine-specific Polo-like kinase 1 (Plk1) is highly expressed in malignant cells and serves as a negative prognostic marker in specific human cancer types . Here, we report the discovery of a potent small-molecule inhibitor of mammalian Plk1, BI 2536, which inhibits Plk1 enzyme activity at low nanomolar concentrations. The compound potently causes a mitotic arrest and induces apoptosis in human cancer cell lines of diverse tissue origin and oncogenome signature. BI 2536 inhibits growth of human tumor xenografts in nude mice and induces regression of large tumors with well-tolerated intravenous dose regimens. In treated tumors, cells arrest in prometaphase, accumulate phosphohistone H3, and contain aberrant mitotic spindles. This mitotic arrest is followed by a surge in apoptosis, detectable by immunohistochemistry and noninvasive optical and magnetic resonance imaging. For addressing the therapeutic potential of Plk1 inhibition, BI 2536 has progressed into clinical studies in patients with locally advanced or metastatic cancers.


Assuntos
Apoptose/efeitos dos fármacos , Proteínas de Ciclo Celular/antagonistas & inibidores , Ciclo Celular/fisiologia , Inibidores Enzimáticos/farmacologia , Neoplasias/metabolismo , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Pteridinas/farmacologia , Transdução de Sinais/fisiologia , Animais , Peso Corporal , Proteínas de Ciclo Celular/metabolismo , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/metabolismo , Feminino , Citometria de Fluxo , Células HeLa , Humanos , Imuno-Histoquímica , Imageamento por Ressonância Magnética , Camundongos , Microscopia de Fluorescência , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Pteridinas/metabolismo , Espectrometria de Fluorescência , Ensaios Antitumorais Modelo de Xenoenxerto , Quinase 1 Polo-Like
9.
Clin Cancer Res ; 15(9): 3094-102, 2009 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-19383823

RESUMO

PURPOSE: Antimitotic chemotherapy remains a cornerstone of multimodality treatment for locally advanced and metastatic cancers. To identify novel mitosis-specific agents with higher selectivity than approved tubulin-binding agents (taxanes, Vinca alkaloids), we have generated inhibitors of Polo-like kinase 1, a target that functions predominantly in mitosis. EXPERIMENTAL DESIGN: The first compound in this series, suitable for i.v. administration, has entered clinical development. To fully explore the potential of Polo-like kinase 1 inhibition in oncology, we have profiled additional compounds and now describe a novel clinical candidate. RESULTS: BI 6727 is a highly potent (enzyme IC(50) = 0.87 nmol/L, EC(50) = 11-37 nmol/L on a panel of cancer cell lines) and selective dihydropteridinone with distinct properties. First, BI 6727 has a pharmacokinetic profile favoring sustained exposure of tumor tissues with a high volume of distribution and a long terminal half-life in mice (V(ss) = 7.6 L/kg, t(1/2) = 46 h) and rats (V(ss) = 22 L/kg, t(1/2) = 54 h). Second, BI 6727 has physicochemical and pharmacokinetic properties that allow in vivo testing of i.v. as well as oral formulations, adding flexibility to dosing schedules. Finally, BI 6727 shows marked antitumor activity in multiple cancer models, including a model of taxane-resistant colorectal cancer. With oral and i.v. routes of administration, the total weekly dose of BI 6727 is most relevant for efficacy, supporting the use of a variety of well-tolerated dosing schedules. CONCLUSION: These findings warrant further investigation of BI 6727 as a tailored antimitotic agent; clinical studies have been initiated.


Assuntos
Antineoplásicos/farmacologia , Antineoplásicos/farmacocinética , Proteínas de Ciclo Celular/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/farmacocinética , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Pteridinas/farmacologia , Pteridinas/farmacocinética , Animais , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Western Blotting , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/enzimologia , Carcinoma Pulmonar de Células não Pequenas/patologia , Ciclo Celular/efeitos dos fármacos , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/enzimologia , Neoplasias do Colo/patologia , Cristalografia por Raios X , Inibidores Enzimáticos/química , Feminino , Imunofluorescência , Fatores de Transcrição Forkhead/fisiologia , Humanos , Técnicas Imunoenzimáticas , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/enzimologia , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Nus , Conformação Proteica , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Pteridinas/química , Ratos , Ratos Wistar , Distribuição Tecidual , Ensaios Antitumorais Modelo de Xenoenxerto , Quinase 1 Polo-Like
10.
J Med Chem ; 62(22): 10272-10293, 2019 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-31689114

RESUMO

The epidermal growth factor receptor (EGFR), when carrying an activating mutation like del19 or L858R, acts as an oncogenic driver in a subset of lung tumors. While tumor responses to tyrosine kinase inhibitors (TKIs) are accompanied by marked tumor shrinkage, the response is usually not durable. Most patients relapse within two years of therapy often due to acquisition of an additional mutation in EGFR kinase domain that confers resistance to TKIs. Crucially, oncogenic EGFR harboring both resistance mutations, T790M and C797S, can no longer be inhibited by currently approved EGFR TKIs. Here, we describe the discovery of BI-4020, which is a noncovalent, wild-type EGFR sparing, macrocyclic TKI. BI-4020 potently inhibits the above-described EGFR variants and induces tumor regressions in a cross-resistant EGFRdel19 T790M C797S xenograft model. Key was the identification of a highly selective but moderately potent benzimidazole followed by complete rigidification of the molecule through macrocyclization.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Animais , Antineoplásicos/farmacocinética , Benzimidazóis/química , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Cristalografia por Raios X , Ciclização , Entropia , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/química , Receptores ErbB/genética , Feminino , Hepatócitos , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Transgênicos , Mutação , Conformação Proteica , Inibidores de Proteínas Quinases/farmacocinética , Relação Estrutura-Atividade , Ensaios Antitumorais Modelo de Xenoenxerto
11.
Oncogene ; 37(20): 2687-2701, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29491412

RESUMO

Bromodomain and extra-terminal (BET) protein inhibitors have been reported as treatment options for acute myeloid leukemia (AML) in preclinical models and are currently being evaluated in clinical trials. This work presents a novel potent and selective BET inhibitor (BI 894999), which has recently entered clinical trials (NCT02516553). In preclinical studies, this compound is highly active in AML cell lines, primary patient samples, and xenografts. HEXIM1 is described as an excellent pharmacodynamic biomarker for target engagement in tumors as well as in blood. Mechanistic studies show that BI 894999 targets super-enhancer-regulated oncogenes and other lineage-specific factors, which are involved in the maintenance of the disease state. BI 894999 is active as monotherapy in AML xenografts, and in addition leads to strongly enhanced antitumor effects in combination with CDK9 inhibitors. This treatment combination results in a marked decrease of global p-Ser2 RNA polymerase II levels and leads to rapid induction of apoptosis in vitro and in vivo. Together, these data provide a strong rationale for the clinical evaluation of BI 894999 in AML.


Assuntos
Antineoplásicos/administração & dosagem , Elementos Facilitadores Genéticos/efeitos dos fármacos , Flavonoides/administração & dosagem , Perfilação da Expressão Gênica/métodos , Leucemia Mieloide Aguda/tratamento farmacológico , Piperidinas/administração & dosagem , Proteínas/antagonistas & inibidores , Pirazinas/administração & dosagem , Triazóis/administração & dosagem , Animais , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Quinase 9 Dependente de Ciclina/antagonistas & inibidores , Regulação para Baixo , Sinergismo Farmacológico , Quimioterapia Combinada , Flavonoides/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células HL-60 , Humanos , Leucemia Mieloide Aguda/genética , Camundongos , Piperidinas/farmacologia , Pirazinas/farmacologia , RNA Polimerase II/metabolismo , Proteínas de Ligação a RNA/genética , Fatores de Transcrição , Triazóis/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
12.
Cancer Lett ; 421: 112-120, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29454094

RESUMO

Interactions between a new potent Bromodomain and extraterminal domain (BET) inhibitor BI 894999 and the polo-like kinase (PLK) inhibitor volasertib were studied in acute myeloid leukemia cell lines in vitro and in vivo. We provide data for the distinct mechanisms of action of these two compounds with a potential utility in AML based on gene expression, cell cycle profile and modulation of PD biomarkers such as MYC and HEXIM1. In contrast to BI 894999, volasertib treatment neither affects MYC nor HEXIM1 expression, but augments and prolongs the decrease of MYC expression caused by BI 894999 treatment. In vitro combination of both compounds leads to a decrease in S-Phase and to increased apoptosis. In vitro scheduling experiments guided in vivo experiments in disseminated AML mouse models. Co-administration of BI 894999 and volasertib dramatically reduces tumor burden accompanied by long-term survival of tumor-bearing mice and eradication of AML cells in mouse bone marrow. Together, these preclinical findings provide evidence for the strong synergistic effect of BI 894999 and volasertib, warranting future clinical studies in patients with AML to investigate this paradigm.


Assuntos
Derivados de Benzeno/farmacologia , Leucemia Mieloide Aguda/patologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas/antagonistas & inibidores , Pteridinas/farmacologia , Animais , Linhagem Celular , Sinergismo Farmacológico , Genes myc , Humanos , Leucemia Mieloide Aguda/genética , Camundongos
13.
Oncogenesis ; 7(2): 21, 2018 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-29472531

RESUMO

Focal adhesion kinase (FAK), a non-receptor tyrosine kinase, has attracted interest as a target for pharmacological intervention in malignant diseases. Here, we describe BI 853520, a novel ATP-competitive inhibitor distinguished by high potency and selectivity. In vitro, the compound inhibits FAK autophosphorylation in PC-3 prostate carcinoma cells with an IC50 of 1 nmol/L and blocks anchorage-independent proliferation of PC-3 cells with an EC50 of 3 nmol/L, whereas cells grown in conventional surface culture are 1000-fold less sensitive. In mice, the compound shows long half-life, high volume of distribution and high oral bioavailability; oral dosing of immunodeficient mice bearing subcutaneous PC-3 prostate adenocarcinoma xenografts resulted in rapid, long-lasting repression of FAK autophosphorylation in tumor tissue. Daily oral administration of BI 853520 to nude mice at doses of 50 mg/kg was well tolerated for prolonged periods of time. In a diverse panel of 16 subcutaneous adenocarcinoma xenograft models in nude mice, drug treatment resulted in a broad spectrum of outcomes, ranging from group median tumor growth inhibition values >100% and tumor regression in subsets of animals to complete lack of sensitivity. Biomarker analysis indicated that high sensitivity is linked to a mesenchymal tumor phenotype, initially defined by loss of E-cadherin expression and subsequently substantiated by gene set enrichment analysis. Further, we obtained microRNA expression profiles for 13 models and observed that hsa-miR-200c-3p expression is strongly correlated with efficacy (R2 = 0.889). BI 853520 is undergoing evaluation in early clinical trials.

14.
FEBS Lett ; 581(13): 2549-56, 2007 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-17499721

RESUMO

In contrast to wtEGFR, its truncated version EGFRvIII transformed non-tumorigenic FDC-P1 cells only when c-Myc was coexpressed. In nude mice, EGFRvIII/c-Myc coexpressing cells induced tumors, whereas wtEGFR-expressing EGF-dependent FDC-P1 cells did not. EGFRvIII function was required for both the induction and maintenance of tumor growth. Cellular proliferation was inhibited by a selective EGFR tyrosine kinase inhibitor indicating intrinsic tyrosine kinase activities for both receptors. Unlike wtEGFR, constitutive signaling by EGFRvIII was refractory to stimulation by the EGFR ligands EGF and TGF-alpha. Summarized, EGFRvIII is a constitutively active receptor tyrosine kinase whose transforming capacity is lower than that of EGF-stimulated wtEGFR.


Assuntos
Transformação Celular Neoplásica , Receptores ErbB/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Animais , Antineoplásicos/uso terapêutico , Linhagem Celular , Receptores ErbB/fisiologia , Citometria de Fluxo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Interleucina-3/farmacologia , Camundongos , Camundongos Nus , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais
15.
Mol Cancer Ther ; 15(3): 354-65, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26916115

RESUMO

BI 882370 is a highly potent and selective RAF inhibitor that binds to the DFG-out (inactive) conformation of the BRAF kinase. The compound inhibited proliferation of human BRAF-mutant melanoma cells with 100× higher potency (1-10 nmol/L) than vemurafenib, whereas wild-type cells were not affected at 1,000 nmol/L. BI 882370 administered orally was efficacious in multiple mouse models of BRAF-mutant melanomas and colorectal carcinomas, and at 25 mg/kg twice daily showed superior efficacy compared with vemurafenib, dabrafenib, or trametinib (dosed to provide exposures reached in patients). To model drug resistance, A375 melanoma-bearing mice were initially treated with vemurafenib; all tumors responded with regression, but the majority subsequently resumed growth. Trametinib did not show any efficacy in this progressing population. BI 882370 induced tumor regression; however, resistance developed within 3 weeks. BI 882370 in combination with trametinib resulted in more pronounced regressions, and resistance was not observed during 5 weeks of second-line therapy. Importantly, mice treated with BI 882370 did not show any body weight loss or clinical signs of intolerability, and no pathologic changes were observed in several major organs investigated, including skin. Furthermore, a pilot study in rats (up to 60 mg/kg daily for 2 weeks) indicated lack of toxicity in terms of clinical chemistry, hematology, pathology, and toxicogenomics. Our results indicate the feasibility of developing novel compounds that provide an improved therapeutic window compared with first-generation BRAF inhibitors, resulting in more pronounced and long-lasting pathway suppression and thus improved efficacy.


Assuntos
Antineoplásicos/farmacologia , Mutação , Neoplasias/genética , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Proteínas Proto-Oncogênicas B-raf/genética , Animais , Antineoplásicos/química , Biomarcadores , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Resistencia a Medicamentos Antineoplásicos , Ativação Enzimática/efeitos dos fármacos , Feminino , Humanos , Isoenzimas , Masculino , Camundongos , Modelos Moleculares , Conformação Molecular , Estrutura Molecular , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Neoplasias/patologia , Inibidores de Proteínas Quinases/química , Multimerização Proteica , Proteínas Proto-Oncogênicas B-raf/química , Ratos , Ensaios Antitumorais Modelo de Xenoenxerto
16.
Target Oncol ; 10(4): 501-8, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25559287

RESUMO

Epidermal growth factor receptor (EGFR) inhibitors have demonstrated efficacy in squamous cell carcinoma of the head and neck (SCCHN). In addition to EGFR, other ErbB family members are expressed and activated in SCCHN. Afatinib is an ErbB family blocker that has been approved for treating patients with EGFR-mutated nonsmall cell lung cancer. We sought to determine the efficacy of afatinib in preclinical models and compare this to other EGFR-targeted agents. Afatinib efficacy was characterized in a panel of ten SCCHN cell lines and found to be most effective against cell lines amplified for EGFR. Afatinib had lower IC(50) values than did gefitinib against the same panel. Two EGFR-amplified cell lines that are resistant to gefitinib are sensitive to afatinib. Cetuximab was not found to have a synergistic effect with afatinib either in vitro or in vivo. Both afatinib and cetuximab were effective in tumor xenograft model. Afatinib is an effective agent in SCCHN especially in models with EGFR amplification.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Carcinoma de Células Escamosas/tratamento farmacológico , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Quinazolinas/farmacologia , Afatinib , Animais , Linhagem Celular Tumoral , Cetuximab/administração & dosagem , Feminino , Humanos , Camundongos , Camundongos Nus , Quinazolinas/administração & dosagem , Carcinoma de Células Escamosas de Cabeça e Pescoço , Ensaios Antitumorais Modelo de Xenoenxerto
17.
J Pharmacol Exp Ther ; 311(2): 502-9, 2004 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-15199094

RESUMO

Overexpression of the epidermal growth factor receptors (EGFRs) and human epidermal growth factor receptor 2 occurs frequently in human cancers and is associated with aggressive tumor behavior and poor patient prognosis. We have investigated the effects in vitro and in vivo of a new class of inhibitor molecules on the growth of several human cancer cell lines. BIBX1382 [N8-(3-chloro-4-fluoro-phenyl)-N2-(1-methyl-piperidin-4-yl)-pyrimido[5,4-d]pyrimidine-2,8-diamine] and BIBU1361 [(3-chloro-4-fluoro-phenyl)-[6-(4-diethylaminomethyl-piperidin-1yl)-pyrimido[5,4-d]pyrimidin-4-yl]-amine] are two new selective EGFR kinase inhibitors that do not block the activity of other tyrosine kinases. BIBU1361 blocked epidermal growth factor-induced phosphorylation of EGFR and also prevented downstream responses such as mitogen-activated protein kinase kinase (MAPK/extracellular signal-regulated kinase kinase) and MAPK activation in cells. In accordance with these observations thymidine incorporation into EGFR-expressing KB cells was selectively and potently inhibited by BIBX1382 and BIBU1361 with half-maximally effective doses in the nanomolar range. Oral administration of these compounds inhibited the growth of established human xenografts in athymic mice, including vulval and head and neck squamous cell carcinomas. Tumor growth inhibition by BIBX1382 coincided with reduced pEGFR and Ki-67 levels in vivo, which is in accordance with the expected effect of EGFR inhibitors. Collectively, these results show that the structural class of pyrimidopyrimidines, exemplified here by BIBX1382 and BIBU1361, represents an interesting scaffold for the design of EGFR inhibitors.


Assuntos
Antineoplásicos/farmacologia , Receptores ErbB/antagonistas & inibidores , Compostos Orgânicos/farmacologia , Animais , Antineoplásicos/uso terapêutico , Modelos Animais de Doenças , Receptores ErbB/metabolismo , Feminino , Humanos , Células KB , Camundongos , Camundongos Nus , Transplante de Neoplasias , Compostos Orgânicos/uso terapêutico , Fosforilação , Piperidinas/farmacologia , Piperidinas/uso terapêutico , Pirimidinas/farmacologia , Pirimidinas/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Células Tumorais Cultivadas , Vulva/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA