Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Am J Med Genet A ; 167A(5): 931-73, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25790323

RESUMO

The following is a review of 50 X-linked syndromes and conditions associated with either arthrogryposis or other types of early contractures. These entities are categorized as those with known responsible gene mutations, those which are definitely X-linked, but the responsible gene has not been identified, and those suspected from family history to be X-linked. Several important ontology pathways for known disease genes have been identified and are discussed in relevance to clinical characteristics. Tables are included which help to identify distinguishing clinical features of each of the conditions.


Assuntos
Artrogripose/genética , Doenças Genéticas Ligadas ao Cromossomo X/genética , Atrofia Muscular Espinal/genética , Doenças Musculares/genética , Artrogripose/diagnóstico , Artrogripose/patologia , Contratura/diagnóstico , Contratura/genética , Contratura/patologia , Doenças Genéticas Ligadas ao Cromossomo X/diagnóstico , Doenças Genéticas Ligadas ao Cromossomo X/patologia , Humanos , Redes e Vias Metabólicas/genética , Atrofia Muscular Espinal/diagnóstico , Atrofia Muscular Espinal/patologia , Doenças Musculares/diagnóstico , Doenças Musculares/patologia , Mutação , Linhagem
2.
Am J Hum Genet ; 82(1): 188-93, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18179898

RESUMO

X-linked infantile spinal muscular atrophy (XL-SMA) is an X-linked disorder presenting with the clinical features hypotonia, areflexia, and multiple congenital contractures (arthrogryposis) associated with loss of anterior horn cells and infantile death. To identify the XL-SMA disease gene, we performed large-scale mutation analysis in genes located between markers DXS8080 and DXS7132 (Xp11.3-Xq11.1). This resulted in detection of three rare novel variants in exon 15 of UBE1 that segregate with disease: two missense mutations (c.1617 G-->T, p.Met539Ile; c.1639 A-->G, p.Ser547Gly) present each in one XL-SMA family, and one synonymous C-->T substitution (c.1731 C-->T, p.Asn577Asn) identified in another three unrelated families. Absence of the missense mutations was demonstrated for 3550 and absence of the synonymous mutation was shown in 7914 control X chromosomes; therefore, these results yielded statistical significant evidence for the association of the synonymous substitution and the two missense mutations with XL-SMA (p = 2.416 x 10(-10), p = 0.001815). We also demonstrated that the synonymous C-->T substitution leads to significant reduction of UBE1 expression and alters the methylation pattern of exon 15, implying a plausible role of this DNA element in developmental UBE1 expression in humans. Our observations indicate first that XL-SMA is part of a growing list of neurodegenerative disorders associated with defects in the ubiquitin-proteasome pathway and second that synonymous C-->T transitions might have the potential to affect gene expression.


Assuntos
Genes Ligados ao Cromossomo X , Mutação de Sentido Incorreto , Mutação Puntual , Atrofias Musculares Espinais da Infância/genética , Enzimas Ativadoras de Ubiquitina/genética , Análise Mutacional de DNA , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Linhagem
3.
F1000Res ; 6: 1636, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29034082

RESUMO

Background: X-linked spinal muscular atrophy (XL-SMA) results from mutations in the Ubiquitin-Like Modifier Activating Enzyme 1 ( UBA1). Previously, four novel closely clustered mutations have been shown to cause this fatal infantile disorder affecting only males. These mutations, three missense and one synonymous, all lie within Exon15 of the UBA1 gene, which contains the active adenylation domain (AAD). Methods: In this study, our group characterized the three known missense variants in vitro. Using a novel Uba1 assay and other methods, we investigated Uba1 adenylation, thioester, and transthioesterification reactions in vitro to determine possible biochemical effects of the missense variants. Results: Our data revealed that only one of the three XL-SMA missense variants impairs the Ubiquitin-adenylating ability of Uba1. Additionally, these missense variants retained Ubiquitin thioester bond formation and transthioesterification rates equal to that found in the wild type. Conclusions: Our results demonstrate a surprising shift from the likelihood of these XL-SMA mutations playing a damaging role in Uba1's enzymatic activity with Ubiquitin, to other roles such as altering UBA1 mRNA splicing via the disruption of splicing factor binding sites, similar to a mechanism in traditional SMA, or disrupting binding to other important in vivo binding partners.  These findings help to narrow the search for the areas of possible dysfunction in the Ubiquitin-proteasome pathway that ultimately result in XL-SMA. Moreover, this investigation provides additional critical understanding of the mutations' biochemical mechanisms, vital for the development of future effective diagnostic assays and therapeutics.

4.
Mol Genet Genomic Med ; 3(4): 283-301, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26247046

RESUMO

Neuromuscular diseases (NMD) account for a significant proportion of infant and childhood mortality and devastating chronic disease. Determining the specific diagnosis of NMD is challenging due to thousands of unique or rare genetic variants that result in overlapping phenotypes. We present four unique childhood myopathy cases characterized by relatively mild muscle weakness, slowly progressing course, mildly elevated creatine phosphokinase (CPK), and contractures. We also present two additional cases characterized by severe prenatal/neonatal myopathy. Prior extensive genetic testing and histology of these cases did not reveal the genetic etiology of disease. Here, we applied whole exome sequencing (WES) and bioinformatics to identify likely causal pathogenic variants in each pedigree. In two cases, we identified novel pathogenic variants in COL6A3. In a third case, we identified novel likely pathogenic variants in COL6A6 and COL6A3. We identified a novel splice variant in EMD in a fourth case. Finally, we classify two cases as calcium channelopathies with identification of novel pathogenic variants in RYR1 and CACNA1S. These are the first cases of myopathies reported to be caused by variants in COL6A6 and CACNA1S. Our results demonstrate the utility and genetic diagnostic value of WES in the broad class of NMD phenotypes.

5.
Heart Rhythm ; 10(5): 728-37, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23291057

RESUMO

BACKGROUND: The slowly-activating delayed rectifier current IKs contributes to repolarization of the cardiac action potential, and is composed of a pore-forming α-subunit, KCNQ1, and a modulatory ß-subunit, KCNE1. Mutations in either subunit can cause long QT syndrome, a potentially fatal arrhythmic disorder. How KCNE1 exerts its extensive control over the kinetics of IKs remains unresolved OBJECTIVE: To evaluate the impact of a novel KCNQ1 mutation on IKs channel gating and kinetics METHODS: KCNQ1 mutations were expressed in Xenopus oocytes in the presence and absence of KCNE1. Voltage clamping and MODELLER software were used to characterize and model channel function. Mutant and wt genes were cloned into FLAG, Myc and HA expression vectors to achieve differential epitope tagging, and expressed in HEK293 cells for immunohistochemical localization and surface biotinylation assay. RESULTS: We identified 2 adjacent mutations, S338F and F339S, in the KCNQ1 S6 domain in unrelated probands. The novel KCNQ1 S338F mutation segregated with prolonged QT interval and torsade de pointes; the second variant, F339S, was associated with fetal bradycardia and prolonged QT interval, but no other clinical events. S338F channels expressed in Xenopus oocytes had slightly increased peak conductance relative to wild type, with a more positive activation voltage. F339S channels conducted minimal current. Unexpectedly, S338F currents were abolished by co-expression with intact WT KCNE1 or its C-terminus (aa63-129), despite normal membrane trafficking and surface co-localization of KCNQ1 S338F and wt KCNE1. Structural modeling indicated that the S338F mutation specifically alters the interaction between the S6 domain of one KCNQ1 subunit and the S4-S5 linker of another, inhibiting voltage-induced movement synergistically with KCNE1 binding. CONCLUSIONS: A novel KCNQ1 mutation specifically impaired channel function in the presence of KCNE1. Our structural model shows that this mutation effectively immobilizes voltage gating by an inhibitory interaction that is additive with that of KCNE1. Our findings illuminate a previously unreported mechanism for LQTS, and validate recent theoretical models of the closed state of the KCNQ1:KCNE1 complex.


Assuntos
Canal de Potássio KCNQ1/genética , Síndrome do QT Longo/genética , Canais de Potássio de Abertura Dependente da Tensão da Membrana/genética , Animais , Criança , Eletrocardiografia , Humanos , Recém-Nascido , Canal de Potássio KCNQ1/metabolismo , Síndrome do QT Longo/metabolismo , Masculino , Mutação , Linhagem , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Xenopus
6.
J Clin Invest ; 122(2): 538-44, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22232211

RESUMO

Hereditary spastic paraplegias (HSPs) are a group of genetically heterogeneous neurodegenerative conditions. They are characterized by progressive spastic paralysis of the legs as a result of selective, length-dependent degeneration of the axons of the corticospinal tract. Mutations in 3 genes encoding proteins that work together to shape the ER into sheets and tubules - receptor accessory protein 1 (REEP1), atlastin-1 (ATL1), and spastin (SPAST) - have been found to underlie many cases of HSP in Northern Europe and North America. Applying Sanger and exome sequencing, we have now identified 3 mutations in reticulon 2 (RTN2), which encodes a member of the reticulon family of prototypic ER-shaping proteins, in families with spastic paraplegia 12 (SPG12). These autosomal dominant mutations included a complete deletion of RTN2 and a frameshift mutation predicted to produce a highly truncated protein. Wild-type reticulon 2, but not the truncated protein potentially encoded by the frameshift allele, localized to the ER. RTN2 interacted with spastin, and this interaction required a hydrophobic region in spastin that is involved in ER localization and that is predicted to form a curvature-inducing/sensing hairpin loop domain. Our results directly implicate a reticulon protein in axonopathy, show that this protein participates in a network of interactions among HSP proteins involved in ER shaping, and further support the hypothesis that abnormal ER morphogenesis is a pathogenic mechanism in HSP.


Assuntos
Retículo Endoplasmático/ultraestrutura , Proteínas de Membrana/genética , Proteínas Musculares/genética , Mutação , Proteínas do Tecido Nervoso/genética , Paraplegia Espástica Hereditária/genética , Paraplegia Espástica Hereditária/patologia , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Análise Mutacional de DNA , Retículo Endoplasmático/metabolismo , Células HEK293 , Células HeLa , Humanos , Proteínas de Membrana/metabolismo , Proteínas Musculares/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Paraplegia Espástica Hereditária/fisiopatologia , Espastina
7.
Genet Med ; 9(1): 52-60, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17224690

RESUMO

PURPOSE: X-linked infantile spinal-muscular atrophy (XL-SMA) is a rare disorder, which presents with the clinical characteristics of hypotonia, areflexia, and multiple congenital contractures (arthrogryposis) associated with loss of anterior horn cells and death in infancy. We have previously reported a single family with XL-SMA that mapped to Xp11.3-q11.2. Here we report further clinical description of XL-SMA plus an additional seven unrelated (XL-SMA) families from North America and Europe that show linkage data consistent with the same region. METHODS: We first investigated linkage to the candidate disease gene region using microsatellite repeat markers. We further saturated the candidate disease gene region using polymorphic microsatellite repeat markers and single nucleotide polymorphisms in an effort to narrow the critical region. Two-point and multipoint linkage analysis was performed using the Allegro software package. RESULTS: Linkage analysis of all XL-SMA families displayed linkage consistent with the original XL-SMA region. CONCLUSION: The addition of new families and new markers has narrowed the disease gene interval for a XL-SMA locus between SNP FLJ22843 near marker DXS 8080 and SNP ARHGEF9 which is near DXS7132 (Xp11.3-Xq11.1).


Assuntos
Mapeamento Cromossômico , Cromossomos Humanos X , Ligação Genética/genética , Atrofias Musculares Espinais da Infância/genética , DNA/genética , Família , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Repetições de Microssatélites , Linhagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA