Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
J Shoulder Elbow Surg ; 28(6): 1183-1192, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30770316

RESUMO

BACKGROUND: Locked plating of displaced proximal humeral fractures is common, but rates of subacromial impingement remain high. This study used a multidisciplinary approach to elucidate the relationships between common surgical parameters, anatomic variability, and the likelihood of plate impingement. METHODS: The experiment was completed in 3 phases. First, a controlled in vitro experiment was conducted to simulate impingement. Second, a dynamic in silico musculoskeletal model modeled changes to implant geometry, surgical techniques, and acromial anatomy, where a collision detection algorithm was used to simulate impingement. Finally, in vivo shoulder kinematics were recorded for 9 activities of daily living. Motions that created a high likelihood of impingement were identified. RESULTS: Of simulated impingement events, 73.9% occurred when the plate was moved proximally, and 84% occurred when acromial tilt was 20° or 25°. Simulations of impingement occurred at cross-body adduction angles between 10° and 50°. Impingement occurred at an average of 162.0° ± 14.8° abduction with 10 mm distal plate placement, whereas the average was 72.1° ± 11.4° with 10 mm proximal placement. A patient may encounter these shoulder angles when performing activities such as combing one's hair, lifting an object overhead, and reaching behind one's head. DISCUSSION AND CONCLUSION: Proximal implant placement and decreases in acromial tilt play major roles in the likelihood of impingement, whereas plate thickness and humeral head center of rotation should also be considered. Careful preoperative planning that includes these factors could help guide operative decision making and improve clinical outcomes.


Assuntos
Placas Ósseas/efeitos adversos , Fixação Interna de Fraturas/instrumentação , Fraturas do Ombro/cirurgia , Síndrome de Colisão do Ombro/etiologia , Acrômio/anatomia & histologia , Atividades Cotidianas , Idoso , Fenômenos Biomecânicos , Cadáver , Simulação por Computador , Feminino , Fixação Interna de Fraturas/efeitos adversos , Fixação Interna de Fraturas/métodos , Humanos , Cabeça do Úmero , Masculino , Movimento , Rotação , Articulação do Ombro/fisiopatologia , Articulação do Ombro/cirurgia , Adulto Jovem
2.
J Ultrasound Med ; 37(10): 2419-2424, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29574900

RESUMO

Structure is an important clinical marker of tendon health; however, current standards use qualitative scores that are not strongly reliable. Therefore, the purpose of this study was to establish the reliability of an image-processing technique that quantifies tendon collagen structure using B-mode ultrasound images. Longitudinal images of the Achilles tendon were collected in 12 healthy young adults, and intra- and inter-rater reliability was assessed over multiple image selections and multiple days. Intraclass correlation coefficients were strong (r ≥ 0.71) for all comparisons. These findings demonstrate that quantitative assessments of tendon structure using B-mode ultrasound are reliable.


Assuntos
Tendão do Calcâneo/anatomia & histologia , Processamento de Imagem Assistida por Computador/métodos , Ultrassonografia/métodos , Adulto , Feminino , Humanos , Masculino , Valores de Referência , Reprodutibilidade dos Testes
3.
BMC Musculoskelet Disord ; 19(1): 399, 2018 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-30424811

RESUMO

BACKGROUND: Musculoskeletal models are commonly used to quantify joint motions and loads during human motion. Constraining joint kinematics simplifies these models but the implications of the placement and quantity of markers used during data acquisition remains unclear. The purpose of this study was to establish the effects of marker placement and quantity on lower extremity kinematics calculated using a constrained-kinematic model. We hypothesized that a constrained-kinematic model would produce lower-extremity kinematics errors that correlated with the number of tracking markers removed from the thigh and shank. METHODS: Healthy-young adults (N = 10) walked on a treadmill at slow, moderate, and fast speeds while skin-mounted markers were tracked using motion capture. Lower extremity kinematics were calculated for 256 combinations of leg and shank markers to establish the implications of marker placement and quantity on joint kinematics. Marker combinations that yielded differences greater than 5 degrees were tested with paired t-tests and the relationship between number of markers and kinematic errors were modeled with polynomials to determine goodness of fit (R2). RESULTS: Sagittal joint and hip coronal kinematics errors were smaller than documented errors caused by soft-tissue artifact, which tends to be approximately 5 degrees, when excluding thigh and shank markers. Joint angle and center kinematic errors negatively correlated with the number of markers included in the analyses (R2 > 0.97) and typically showed the greatest error reductions when two markers were included on the thigh or shank segments. Further, we demonstrated that a simplified marker set that included markers on the pelvis, lateral knee condyle, lateral malleolus, and shoes produced kinematics that strongly agreed with the traditional marker set that included 3 tracking markers for each segment. CONCLUSION: Constrained-kinematic models are resilient to marker placement and quantity, which has implications on study design and post-processing workflows.


Assuntos
Teste de Esforço/métodos , Extremidade Inferior/fisiologia , Modelos Biológicos , Adulto , Fenômenos Biomecânicos/fisiologia , Feminino , Humanos , Extremidade Inferior/anatomia & histologia , Masculino , Pelve/anatomia & histologia , Pelve/fisiologia , Coxa da Perna/anatomia & histologia , Coxa da Perna/fisiologia , Adulto Jovem
4.
Arch Orthop Trauma Surg ; 137(9): 1173-1179, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28634743

RESUMO

INTRODUCTION: Open reduction and internal fixation has long been accepted as optimal treatment for displaced olecranon fractures based on poor results seen with conservative management. With the presence of comminution, tension-band wiring constructs are contraindicated due to tendency to compress through fragments, thereby shortening the articular segment. Therefore, plate fixation is typically employed. Our hypothesis was that in a comminuted fracture model, 2.7 mm reconstruction plating without locking screws will perform equally to 3.5 mm locked plating in terms of fracture displacement and rotation (shear). MATERIALS AND METHODS: A three-part comminuted olecranon fracture pattern was created in nine matched pairs of cadaveric specimen using an oscillating saw in standardized, reproducible fashion. Each matched pair was then randomized to receive either 2.7 mm reconstruction plating or 3.5 mm proximal ulna locked plating. Random allocation software was used to assign the 2.7 mm plate construct to either the right or left side of each pair with the contralateral receiving the 3.5 mm plate construct. Specimens were cyclically loaded simulating passive range of motion exercises commonly performed during rehabilitation. Displacement and rotation in relation to the long axis of the ulna were measured through motion capture. Fragment gapping and rotation was quantified following 100 cycles at 10 N and again following 100 cycles at 500 N. RESULTS: No significant differences were detected between the 2.7 and 3.5 mm plates in fracture rotation or gapping following loads at 10 N (0.5° and 0.7°; 0.6 and 1.2 mm; respectively; p > 0.05) or 500 N (2.3° and 1.6°; 3.8 and 3.1 mm; respectively; p > 0.05) loading. Fragment rotation and gapping were positively correlated within each plate construct (R 2 > 0.445; p < 0.05). CONCLUSIONS: 2.7 mm plating is an alternative to 3.5 mm locked plating with decreased plate prominence without significantly sacrificing displacement and rotational control. This is beneficial in fracture patterns where the traditional dorsal plating does not offer optimal screw trajectory.


Assuntos
Placas Ósseas , Fixação Interna de Fraturas/instrumentação , Olécrano , Fraturas da Ulna/cirurgia , Fenômenos Biomecânicos , Fixação Interna de Fraturas/métodos , Humanos , Modelos Biológicos , Olécrano/lesões , Olécrano/cirurgia , Amplitude de Movimento Articular
5.
Clin Orthop Relat Res ; 474(4): 1008-16, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26689585

RESUMO

BACKGROUND: While successful subtalar joint arthrodesis provides pain relief, resultant alterations in ankle biomechanics need to be considered, as this procedure may predispose the remaining hindfoot and tibiotalar joint to accelerated degenerative changes. However, the biomechanical consequences of isolated subtalar joint arthrodesis and additive fusions of the Chopart's joints on tibiotalar joint biomechanics remain poorly understood. QUESTIONS/PURPOSES: We asked: What is the effect of isolated subtalar fusion and sequential Chopart's joint fusions of the talonavicular and calcaneocuboid joints on tibiotalar joint (1) mechanics and (2) kinematics during loading for neutral, inverted, and everted orientations of the foot? METHODS: We evaluated the total force, contact area, and the magnitude and distribution of the contact stress on the articular surface of the talar dome, while simultaneously tracking the position of the talus relative to the tibia during loading in seven fresh-frozen cadaver feet. Each foot was loaded in the unfused, intact control condition followed by three randomized simulated hindfoot arthrodesis modalities: subtalar, double (subtalar and talonavicular), and triple (subtalar, talonavicular, and calcaneocuboid) arthrodesis. The intact and arthrodesis conditions were tested in three alignments using a metallic wedge insert: neutral (flat), 10° inverted, and 10° everted. RESULTS: Tibiotalar mechanics (total force and contact area) and kinematics (external rotation) differed owing to hindfoot arthrodeses. After subtalar arthrodesis, there were decreases in total force (445 ± 142 N, 95% CI, 340-550 N, versus 588 ± 118 N, 95% CI, 500-676 N; p < 0.001) and contact area (282 mm(2), 95% CI, 222-342 mm(2), versus 336 ± 96 mm(2), 95% CI, 265-407 mm(2); p < 0.026) detected during loading in the neutral position; these changes also were seen in the everted foot position. Hindfoot arthrodesis also was associated with increased external rotation of the tibiotalar joint during loading: subtalar arthrodesis in the neutral loading position (3.3° ± 1.6°; 95% CI, 2°-4.6°; p = 0.004) and everted loading position (4.8° ± 2.6°; 95% CI, 2.7°-6.8°; p = 0.043); double arthrodesis in neutral (4.4° ± 2°; 95% CI, 2.8°-6°; p = 0.003) and inverted positions (5.8° ± 2.6°; 95% CI, 3.7°-7.9°; p = 0.002), and triple arthrodesis in all loaded orientations including neutral (4.5° ± 1.8°; 95% CI, 3.1°-5.9°; p = 0.002), inverted (6.4° ± 3.5°; 95% CI, 3.6°-9.2°; p = 0.009), and everted (3.6° ± 2°; 95% CI, 2°-5.2°; p = 0.053) positions. Finally, after subtalar arthrodesis, additive fusions at Chopart's joints did not appear to result in additional observed differences in tibiotalar contact mechanics or kinematics with the number of specimens available. CONCLUSIONS: Using a cadaveric biomechanical model, we identified some predictable trends in ankle biomechanics during loading after hindfoot fusion. In our tested specimens, fusion of the subtalar joint appeared to exert a dominant influence over ankle loading. CLINICAL RELEVANCE: A loss or deficit in function of the subtalar joint may be sufficient to alter ankle loading. These findings warrant consideration in the treatment of the arthritic hindfoot and also toward defining biomechanical goals for ankle arthroplasty in the setting of concomitant hindfoot degeneration or arthrodesis.


Assuntos
Articulação do Tornozelo/cirurgia , Artrodese , Idoso , Articulação do Tornozelo/fisiopatologia , Artrodese/efeitos adversos , Fenômenos Biomecânicos , Cadáver , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Complicações Pós-Operatórias/fisiopatologia , Estresse Mecânico , Suporte de Carga
6.
Med Sci Sports Exerc ; 56(3): 545-552, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-37847102

RESUMO

PURPOSE: This study aimed to evaluate patellar tendon loading profiles (loading index, based on loading peak, loading impulse, and loading rate) of rehabilitation exercises to develop clinical guidelines to incrementally increase the rate and magnitude of patellar tendon loading during rehabilitation. METHODS: Twenty healthy adults (10 females/10 males, 25.9 ± 5.7 yr) performed 35 rehabilitation exercises, including different variations of squats, lunge, jumps, hops, landings, running, and sports specific tasks. Kinematic and kinetic data were collected, and a patellar tendon loading index was determined for each exercise using a weighted sum of loading peak, loading rate, and cumulative loading impulse. Then the exercises were ranked, according to the loading index, into tier 1 (loading index ≤0.33), tier 2 (0.33 < loading index <0.66), and tier 3 (loading index ≥0.66). RESULTS: The single-leg decline squat showed the highest loading index (0.747). Other tier 3 exercises included single-leg forward hop (0.666), single-leg countermovement jump (0.711), and running cut (0.725). The Spanish squat was categorized as a tier 2 exercise (0.563), as was running (0.612), double-leg countermovement jump (0.610), single-leg drop vertical jump (0.599), single-leg full squat (0.580), double-leg drop vertical jump (0.563), lunge (0.471), double-leg full squat (0.428), single-leg 60° squat (0.411), and Bulgarian squat (0.406). Tier 1 exercises included 20 cm step up (0.187), 20 cm step down (0.288), 30 cm step up (0.321), and double-leg 60° squat (0.224). CONCLUSIONS: Three patellar tendon loading tiers were established based on a combination of loading peak, loading impulse, and loading rate. Clinicians may use these loading tiers as a guide to progressively increase patellar tendon loading during the rehabilitation of patients with patellar tendon disorders and after anterior cruciate ligament reconstruction using the bone-patellar tendon-bone graft.


Assuntos
Lesões do Ligamento Cruzado Anterior , Ligamento Patelar , Traumatismos dos Tendões , Masculino , Adulto , Feminino , Humanos , Terapia por Exercício , Exercício Físico , Postura
7.
IEEE J Biomed Health Inform ; 28(6): 3411-3421, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38381640

RESUMO

OBJECTIVE: Exercise monitoring with low-cost wearables could improve the efficacy of remote physical-therapy prescriptions by tracking compliance and informing the delivery of tailored feedback. While a multitude of commercial wearables can detect activities of daily life, such as walking and running, they cannot accurately detect physical-therapy exercises. The goal of this study was to build open-source classifiers for remote physical-therapy monitoring and provide insight on how data collection choices may impact classifier performance. METHODS: We trained and evaluated multi-class classifiers using data from 19 healthy adults who performed 37 exercises while wearing 10 inertial measurement units (IMUs) on the chest, pelvis, wrists, thighs, shanks, and feet. We investigated the effect of sensor density, location, type, sampling frequency, output granularity, feature engineering, and training-data size on exercise-classification performance. RESULTS: Exercise groups (n = 10) could be classified with 96% accuracy using a set of 10 IMUs and with 89% accuracy using a single pelvis-worn IMU. Multiple sensor modalities (i.e., accelerometers and gyroscopes), high sampling frequencies, and more data from the same population did not improve model performance, but in the future data from diverse populations and better feature engineering could. CONCLUSIONS: Given the growing demand for exercise monitoring systems, our sensitivity analyses, along with open-source tools and data, should reduce barriers for product developers, who are balancing accuracy with product formfactor, and increase transparency and trust in clinicians and patients.


Assuntos
Acelerometria , Exercício Físico , Dispositivos Eletrônicos Vestíveis , Humanos , Adulto , Masculino , Feminino , Exercício Físico/fisiologia , Acelerometria/métodos , Adulto Jovem , Monitorização Ambulatorial/métodos , Monitorização Ambulatorial/instrumentação , Processamento de Sinais Assistido por Computador
8.
J Orthop Res ; 42(4): 894-904, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37804210

RESUMO

The early postnatal period represents a critical window for the maturation and development of orthopedic tissues, including those within the knee joint. To understand how mechanical loading impacts the maturational trajectory of the meniscus and other tissues of the hindlimb, perturbation of postnatal weight bearing was achieved through surgical resection of the sciatic nerve in neonatal mice at 1 or 14 days old. Sciatic nerve resection (SNR) produced significant and persistent disruptions in gait, leading to reduced tibial length and reductions in Achilles tendon mechanical properties. However, SNR resulted in minimal disruptions in morphometric parameters of the menisci and other structures in the knee joint, with no detectable differences in Col1a1-YFP or Col2a1-CFP expressing cells within the menisci. Furthermore, micromechanical properties of the meniscus and cartilage (as assessed by atomic force microscopy-based nanoindentation testing) were not different between experimental groups. In contrast to our initial hypothesis, reduced hindlimb weight bearing via neonatal SNR did not significantly impact the growth and development of the knee meniscus. This unexpected finding demonstrates that the input mechanical threshold required to sustain meniscus development may be lower than previously hypothesized, though future studies incorporating skeletal kinematic models coupled with force plate measurements will be required to calculate the loads passing through the affected hindlimb and precisely define these thresholds. Collectively, these results provide insight into the mechanobiological responses of the meniscus to alterations in load, and contribute to our understanding of the factors that influence normal postnatal development.


Assuntos
Menisco , Camundongos , Animais , Articulação do Joelho/fisiologia , Cartilagem , Marcha/fisiologia , Suporte de Carga , Meniscos Tibiais/cirurgia
9.
bioRxiv ; 2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36865211

RESUMO

Motion analysis is essential for assessing in-vivo human biomechanics. Marker-based motion capture is the standard to analyze human motion, but the inherent inaccuracy and practical challenges limit its utility in large-scale and real-world applications. Markerless motion capture has shown promise to overcome these practical barriers. However, its fidelity in quantifying joint kinematics and kinetics has not been verified across multiple common human movements. In this study, we concurrently captured marker-based and markerless motion data on 10 healthy subjects performing 8 daily living and exercise movements. We calculated the correlation (R xy ) and root-mean-square difference (RMSD) between markerless and marker-based estimates of ankle dorsi-plantarflexion, knee flexion, and three-dimensional hip kinematics (angles) and kinetics (moments) during each movement. Estimates from markerless motion capture matched closely with marker-based in ankle and knee joint angles (R xy ≥ 0.877, RMSD ≤ 5.9°) and moments (R xy ≥ 0.934, RMSD ≤ 2.66 % height × weight). High outcome comparability means the practical benefits of markerless motion capture can simplify experiments and facilitate large-scale analyses. Hip angles and moments demonstrated more differences between the two systems (RMSD: 6.7° - 15.9° and up to 7.15 % height × weight), especially during rapid movements such as running. Markerless motion capture appears to improve the accuracy of hip-related measures, yet more research is needed for validation. We encourage the biomechanics community to continue verifying, validating, and establishing best practices for markerless motion capture, which holds exciting potential to advance collaborative biomechanical research and expand real-world assessments needed for clinical translation.

10.
J Biomech ; 157: 111751, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37552921

RESUMO

Motion analysis is essential for assessing in-vivo human biomechanics. Marker-based motion capture is the standard to analyze human motion, but the inherent inaccuracy and practical challenges limit its utility in large-scale and real-world applications. Markerless motion capture has shown promise to overcome these practical barriers. However, its fidelity in quantifying joint kinematics and kinetics has not been verified across multiple common human movements. In this study, we concurrently captured marker-based and markerless motion data on 10 healthy study participants performing 8 daily living and exercise movements. We calculated the correlation (Rxy) and root-mean-square difference (RMSD) between markerless and marker-based estimates of ankle dorsi-plantarflexion, knee flexion, and three-dimensional hip kinematics (angles) and kinetics (moments) during each movement. Estimates from markerless motion capture matched closely with marker-based in ankle and knee joint angles (Rxy ≥ 0.877, RMSD ≤ 5.9°) and moments (Rxy ≥ 0.934, RMSD ≤ 2.66 % height × weight). High outcome comparability means the practical benefits of markerless motion capture can simplify experiments and facilitate large-scale analyses. Hip angles and moments demonstrated more differences between the two systems (RMSD: 6.7-15.9° and up to 7.15 % height × weight), especially during rapid movements such as running. Markerless motion capture appears to improve the accuracy of hip-related measures, yet more research is needed for validation. We encourage the biomechanics community to continue verifying, validating, and establishing best practices for markerless motion capture, which holds exciting potential to advance collaborative biomechanical research and expand real-world assessments needed for clinical translation.


Assuntos
Extremidade Inferior , Captura de Movimento , Humanos , Fenômenos Biomecânicos , Cinética , Movimento , Movimento (Física) , Articulação do Joelho
11.
medRxiv ; 2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37333069

RESUMO

Achilles tendon injuries are treated with progressive weight bearing to promote tendon healing and restore function. Patient rehabilitation progression are typically studied in controlled, lab settings and do not represent the long-term loading experienced during daily living. The purpose of this study is to develop a wearable paradigm to accurately monitor Achilles tendon loading and walking speed using low-cost sensors that reduce subject burden. Ten healthy adults walked in an immobilizing boot under various heel wedge conditions (30°, 5°, 0°) and walking speeds. Three-dimensional motion capture, ground reaction force, and 6-axis inertial measurement unit (IMU) signals were collected per trial. We used Least Absolute Shrinkage and Selection Operator (LASSO) regression to predict peak Achilles tendon load and walking speed. The effects of using only accelerometer data, different sampling frequency, and multiple sensors to train the model were also explored. Walking speed models outperformed (mean absolute percentage error (MAPE): 8.41 ± 4.08%) tendon load models (MAPE: 33.93 ± 23.9%). Models trained with subject-specific data performed significantly better than generalized models. For example, our personalized model that was trained with only subject-specific data predicted tendon load with a 11.5 ± 4.41% MAPE and walking speed with a 4.50 ± 0.91% MAPE. Removing gyroscope channels, decreasing sampling frequency, and using combinations of sensors had inconsequential effects on models performance (changes in MAPE < 6.09%). We developed a simple monitoring paradigm that uses LASSO regression and wearable sensors to accurately predict Achilles tendon loading and walking speed while ambulating in an immobilizing boot. This paradigm provides a clinically implementable strategy to longitudinally monitor patient loading and activity while recovering from Achilles tendon injuries.

12.
Am J Sports Med ; 51(8): 2110-2119, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37272685

RESUMO

BACKGROUND: Exercises that provide progressive therapeutic loading are a central component of patellofemoral pain rehabilitation, but quantitative evidence on patellofemoral joint loading is scarce for a majority of common weightbearing rehabilitation exercises. PURPOSE: To define a loading index to quantify, compare, rank, and categorize overall loading levels in the patellofemoral joint across 35 types of weightbearing rehabilitation exercises and activities of daily living. STUDY DESIGN: Descriptive laboratory study. METHODS: Model-estimated knee flexion angles and extension moments based on motion capture and ground-reaction force data were used to quantify patellofemoral joint loading in 20 healthy participants who performed each exercise. A loading index was computed via a weighted sum of loading peak and cumulative loading impulse for each exercise. The 35 rehabilitation exercises and daily living activities were then ranked and categorized into low, moderate, and high "loading tiers" according to the loading index. RESULTS: Overall patellofemoral loading levels varied substantially across the exercises and activities, with loading peak ranging from 0.6 times body weight during walking to 8.2 times body weight during single-leg decline squat. Most rehabilitation exercises generated a moderate level of patellofemoral joint loading. Few weightbearing exercises provided low-level loading that resembled walking or high-level loading with both high magnitude and duration. Exercises with high knee flexion tended to generate higher patellofemoral joint loading compared with high-intensity exercises. CONCLUSION: This study quantified patellofemoral joint loading across a large collection of weightbearing exercises in the same cohort. CLINICAL RELEVANCE: The visualized loading index ranks and modifiable worksheet may assist clinicians in planning patient-specific exercise programs for patellofemoral pain rehabilitation.


Assuntos
Articulação Patelofemoral , Síndrome da Dor Patelofemoral , Humanos , Atividades Cotidianas , Fenômenos Biomecânicos , Terapia por Exercício , Suporte de Carga , Peso Corporal , Articulação do Joelho
13.
Sci Rep ; 13(1): 18086, 2023 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-37872320

RESUMO

The purpose of this study is to develop a wearable paradigm to accurately monitor Achilles tendon loading and walking speed using wearable sensors that reduce subject burden. Ten healthy adults walked in an immobilizing boot under various heel wedge conditions (30°, 5°, 0°) and walking speeds. Three-dimensional motion capture, ground reaction force, and 6-axis inertial measurement unit (IMU) signals were collected. We used a Least Absolute Shrinkage and Selection Operator (LASSO) regression to predict peak Achilles tendon load and walking speed. The effects of altering sensor parameters were also explored. Walking speed models (mean absolute percentage error (MAPE): 8.81 ± 4.29%) outperformed tendon load models (MAPE: 34.93 ± 26.3%). Models trained with subject-specific data performed better than models trained without subject-specific data. Removing the gyroscope, decreasing the sampling frequency, and using combinations of sensors did not change the usability of the models, having inconsequential effects on model performance. We developed a simple monitoring paradigm that uses LASSO regression and wearable sensors to accurately predict (MAPE ≤ 12.6%) Achilles tendon loading and walking speed while ambulating in an immobilizing boot. This paradigm provides a clinically implementable strategy to longitudinally monitor patient loading and activity while recovering from Achilles tendon injuries.


Assuntos
Tendão do Calcâneo , Dispositivos Eletrônicos Vestíveis , Adulto , Humanos , Velocidade de Caminhada , Caminhada , Aprendizado de Máquina , Fenômenos Biomecânicos , Marcha
14.
Small Methods ; 7(8): e2201318, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36571435

RESUMO

High-density surface electromyography (HDsEMG) allows noninvasive muscle monitoring and disease diagnosis. Clinical translation of current HDsEMG technologies is hampered by cost, limited scalability, low usability, and minimal spatial coverage. Here, this study presents, validates, and demonstrates the broad clinical applicability of dry wearable MXene HDsEMG arrays (MXtrodes) fabricated from safe and scalable liquid-phase processing of Ti3 C2 Tx . The fabrication scheme allows easy customization of array geometry to match subject anatomy, while the gel-free and minimal skin preparation enhance usability and comfort. The low impedance and high conductivity of the MXtrode arrays allow detection of the activity of large muscle groups at higher quality and spatial resolution than state-of-the-art wireless electromyography  sensors, and in realistic clinical scenarios. To demonstrate the clinical applicability of MXtrodes in the context of neuromuscular diagnostics and rehabilitation, simultaneous HDsEMG and biomechanical mapping of muscle groups across the whole calf during various tasks, ranging from controlled contractions to walking is shown. Finally, the integration of HDsEMG acquired with MXtrodes with a machine learning pipeline and the accurate prediction of the phases of human gait are shown. The results underscore the advantages and translatability of MXene-based wearable bioelectronics for studying neuromuscular function and disease, as well as for precision rehabilitation.


Assuntos
Tecnologia Assistiva , Dispositivos Eletrônicos Vestíveis , Humanos , Eletromiografia/métodos , Músculo Esquelético/fisiologia
15.
Proc Biol Sci ; 279(1735): 2018-24, 2012 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-22189400

RESUMO

Recent studies of sprinters and distance runners have suggested that variations in human foot proportions and plantarflexor muscle moment arm correspond to the level of sprint performance or running economy. Less clear, however, is whether differences in muscle moment arm are mediated by altered tendon paths or by variation in the centre of ankle joint rotation. Previous measurements of these differences have relied upon assumed joint centres and measurements of bone geometry made externally, such that they would be affected by the thickness of the overlying soft tissue. Using magnetic resonance imaging, we found that trained sprinters have shorter plantarflexor moment arms (p = 0.011) and longer forefoot bones (p = 0.019) than non-sprinters. The shorter moment arms of sprinters are attributable to differences in the location of the centre of rotation (p < 0.001) rather than to differences in the path of the Achilles tendon. A simple computer model suggests that increasing the ratio of forefoot to rearfoot length permits more plantarflexor muscle work during plantarflexion that occurs at rates expected during the acceleration phase following the sprint start.


Assuntos
Articulação do Tornozelo/fisiologia , Pé/fisiologia , Corrida , Fenômenos Biomecânicos , Simulação por Computador , Pé/anatomia & histologia , Humanos , Imageamento por Ressonância Magnética , Masculino , Contração Muscular , Músculo Esquelético/anatomia & histologia , Músculo Esquelético/fisiologia
16.
J Biomech ; 145: 111393, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36442431

RESUMO

Plantar flexor functional deficits measured using joint dynamometry are associated with poor outcomes in patients following Achilles tendon rupture. In this study, we developed a small animal dynamometer to quantify functional deficits in a rat Achilles tendon rupture model. Like our reported plantar flexor deficits in patients recovering from Achilles tendon ruptures, we found in our small animal model functional deficits across the ankle range of motion, resulting in an average 34% less positive work being done compared to the uninjured contralateral limb. These functional deficits are similar to 38% less plantar flexor work done by patients who were treated non-surgically in our prior research. Further, these torque deficits were greater in plantar flexion than dorsiflexion, which agree with clinical complaints of limited function during tasks like jumping and hiking. These findings serve as compelling evidence that our Sprague Dawley rat model of an Achilles tendon rupture recapitulates the functional deficits we observed in patients treated nonsurgically. We provide thorough documentation for other groups to build their own dynamometers, which can be modified to meet unique experimental criteria.


Assuntos
Tendão do Calcâneo , Animais , Ratos , Ratos Sprague-Dawley , Tendão do Calcâneo/lesões , Lágrimas
17.
J Biomech ; 127: 110688, 2021 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-34461365

RESUMO

Researchers often estimate joint loading using musculoskeletal models to solve the inverse dynamics problem. This approach is powerful because it can be done non-invasively, however, it relies on assumptions and physical measurements that are prone to measurement error. The purpose of this study was to determine the impact of these errors - specifically, segment mass and shear ground reaction force - have on analyzing joint loads during activities of daily living. We performed traditional marker-based motion capture analysis on 8 healthy adults while they completed a battery of exercises on 6 degree of freedom force plates. We then scaled the mass of each segment as well as the shear component of the ground reaction force in 5% increments between 0 and 200% and iteratively performed inverse dynamics calculations, resulting in 1681 mass-shear combinations per activity. We compared the peak joint moments of the ankle, knee, and hip at each mass-shear combination to the 100% mass and 100% shear combination to determine the percent error. We found that the ankle was most resistant to changes in both mass and shear and the knee was resistant to changes in mass while the hip was sensitive to changes in both mass and shear. These results can help guide researchers who are pursuing lower-cost or more convenient data collection setups.


Assuntos
Atividades Cotidianas , Extremidade Inferior , Adulto , Articulação do Tornozelo , Fenômenos Biomecânicos , Articulação do Quadril , Humanos , Articulação do Joelho
18.
Am J Sports Med ; 49(9): 2439-2446, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34115525

RESUMO

BACKGROUND: Deficits in sporting performance after Achilles tendon repair may be due to changes in musculotendinous unit structure, including tendon elongation and muscle fascicle shortening. PURPOSE/HYPOTHESIS: The purpose was to discern whether Achilles tendon rupture reduces triceps surae muscle force generation, alters functional ankle range of motion, or both during sports-related tasks. We hypothesized that individuals who have undergone Achilles tendon repair lack the functional ankle range of motion needed to complete sports-related tasks. STUDY DESIGN: Descriptive laboratory study. METHODS: The study included individuals 1 to 3 years after treatment of Achilles tendon rupture with open repair. Participants (n = 11) completed a heel-rise task and 3 jumping tasks. Lower extremity biomechanics were analyzed using motion capture. Between-limb differences were tested using paired t test. RESULTS: Pelvic vertical displacement was reduced during the heel-rise (mean difference, -12.8%; P = .026) but not during the jumping task (P > .1). In the concentric phase of all tasks, peak ankle plantarflexion angle (range of mean difference, -19.2% to -48.8%; P < .05) and total plantar flexor work (defined as the area under the plantar flexor torque - ankle angle curve) (range of mean difference, -9.5% to -25.7%; P < .05) were lower on the repaired side relative to the uninjured side. No significant differences were seen in peak Achilles tendon load or impulse with any of the tasks. There were no differences in plantar flexor work or Achilles tendon load parameters during eccentric phases. CONCLUSION: Impaired task performance or increased demands on proximal joints were observed on the repaired side in tasks isolating ankle function. Tasks that did not isolate ankle function appeared to be well recovered, although functional ankle range of motion was reduced with rupture. Reduced plantar flexor muscle-tendon unit work supports previous reports that an elongated tendon and shorter muscle fascicles caused by Achilles tendon rupture constrain functional capacity. Achilles tendon peak load and impulse were not decreased, suggesting that reduced and shifted functional ankle range of motion (favoring dorsiflexion) underlies performance deficits. CLINICAL RELEVANCE: These findings point to the need to reduce tendon elongation and restore muscle length of the triceps surae after Achilles tendon rupture in order to address musculature that is short but not necessarily weak for improved performance with sports-related activities.


Assuntos
Tendão do Calcâneo , Tendão do Calcâneo/cirurgia , Tornozelo , Articulação do Tornozelo/cirurgia , Calcanhar , Humanos , Músculo Esquelético , Amplitude de Movimento Articular , Ruptura/cirurgia
19.
J Biomech ; 125: 110547, 2021 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-34175570

RESUMO

Markerless motion capture using deep learning approaches have potential to revolutionize the field of biomechanics by allowing researchers to collect data outside of the laboratory environment, yet there remain questions regarding the accuracy and ease of use of these approaches. The purpose of this study was to apply a markerless motion capture approach to extract lower limb angles in the sagittal plane during the vertical jump and to evaluate agreement between the custom trained model and gold standard motion capture. We performed this study using a large open source data set (N = 84) that included synchronized commercial video and gold standard motion capture. We split these data into a training set for model development (n = 69) and test set to evaluate capture performance relative to gold standard motion capture using coefficient of multiple correlations (CMC) (n = 15). We found very strong agreement between the custom trained markerless approach and marker-based motion capture within the test set across the entire movement (CMC > 0.991, RMSE < 3.22°), with at least strong CMC values across all trials for the hip (0.853 ± 0.23), knee (0.963 ± 0.471), and ankle (0.970 ± 0.055). The strong agreement between markerless and marker-based motion capture provides evidence that markerless motion capture is a viable tool to extend data collection to outside of the laboratory. As biomechanical research struggles with representative sampling practices, markerless motion capture has potential to transform biomechanical research away from traditional laboratory settings into venues convenient to populations that are under sampled without sacrificing measurement fidelity.


Assuntos
Articulação do Tornozelo , Laboratórios , Fenômenos Biomecânicos , Articulação do Joelho , Movimento (Física)
20.
Med Sci Sports Exerc ; 53(1): 124-130, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32658037

RESUMO

PURPOSE: The purposes of our study were to evaluate Achilles tendon loading profiles of various exercises and to develop guidelines to incrementally increase the rate and magnitude of Achilles tendon loading during rehabilitation. METHODS: Eight healthy young adults completed a battery of rehabilitation exercises. During each exercise, we collected three-dimensional motion capture and ground reaction force data to estimate Achilles tendon loading biomechanics. Using these loading estimates, we developed an exercise progression that incrementally increases Achilles tendon loading based on the magnitude, duration, and rate of tendon loading. RESULTS: We found that Achilles tendon loading could be incrementally increased using a set of either isolated ankle movements or multijoint movements. Peak Achilles tendon loads varied more than 12-fold, from 0.5 bodyweights during a seated heel raise to 7.3 bodyweights during a forward single-leg hop. Asymmetric stepping movements like lunges, step ups, and step downs provide additional flexibility for prescribing tendon loading on a side-specific manner. CONCLUSION: By establishing progressions for Achilles tendon loading, rehabilitative care can be tailored to address the specific needs of each patient. Our comprehensive data set also provides clinicians and researchers guidelines on how to alter magnitude, duration, and rate of loading to design new exercises and exercise progressions based on the clinical need.


Assuntos
Tendão do Calcâneo/fisiologia , Terapia por Exercício/métodos , Exercício Físico/fisiologia , Suporte de Carga , Tendão do Calcâneo/lesões , Adulto , Articulação do Tornozelo/fisiologia , Fenômenos Biomecânicos , Feminino , Humanos , Extremidade Inferior/fisiologia , Masculino , Estudos de Tempo e Movimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA