RESUMO
The α7 nicotinic acetylcholine receptor plays critical roles in the central nervous system and in the cholinergic inflammatory pathway. This ligand-gated ion channel assembles as a homopentamer, is exceptionally permeable to Ca2+, and desensitizes faster than any other Cys-loop receptor. The α7 receptor has served as a prototype for the Cys-loop superfamily yet has proven refractory to structural analysis. We present cryo-EM structures of the human α7 nicotinic receptor in a lipidic environment in resting, activated, and desensitized states, illuminating the principal steps in the gating cycle. The structures also reveal elements that contribute to its function, including a C-terminal latch that is permissive for channel opening, and an anionic ring in the extracellular vestibule that contributes to its high conductance and calcium permeability. Comparisons among the α7 structures provide a foundation for mapping the gating cycle and reveal divergence in gating mechanisms in the Cys-loop receptor superfamily.
Assuntos
Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Bungarotoxinas/química , Bungarotoxinas/metabolismo , Cálcio/metabolismo , Membrana Celular/química , Microscopia Crioeletrônica , Vesículas Extracelulares/metabolismo , Células HEK293 , Humanos , Simulação de Dinâmica Molecular , Mutagênese Sítio-Dirigida , Técnicas de Patch-Clamp , Domínios Proteicos , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Receptor Nicotínico de Acetilcolina alfa7/química , Receptor Nicotínico de Acetilcolina alfa7/genéticaRESUMO
Autoimmune autonomic ganglionopathy (AAG) is a rare disease wherein autoantibodies target the ganglionic acetylcholine receptor (gAChR). Current diagnosis in the United States depends upon clinical symptoms and positive autoantibody detection using a radioimmunoprecipitation assay (RIA). Here we offer a proof-of-principle study on an alternative method, fluorescence-detection size-exclusion-chromatography (FSEC). We show FSEC can detect autoantibodies against gAChR from patient sera but not healthy controls or samples from other autoimmune diseases. We compare FSEC to RIA and find good correlation. We discuss potential advantages of using FSEC as an alternative or as a first-step diagnostic prior to pursuing existing methodologies.