Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Trop Anim Health Prod ; 55(3): 186, 2023 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-37130990

RESUMO

In this study, the association between PAPPA2 coding variants and gastrointestinal (GI) nematode fecal egg count (FEC) score in adult Turkish sheep was investigated. For this purpose, the FEC score was determined in adult sheep from six breeds: Karacabey Merino (n = 137), Kivircik (n = 116), Cine capari (n = 109), Karakacan (n = 102), Imroz (n = 73), and Chios (n = 50). Sheep were classified as shedders or non-shedders within breeds and flocks. The first group was the fecal egg shedders (> 50 per gram of feces), and the second group was the no fecal egg shedders (≤ 50 per gram of feces). The exon 1, exon 2, exon 5, exon 7, and a part of 5'UTR of the ovine PAPPA2 gene were genotyped by Sanger sequencing of these two groups. Fourteen synonymous and three non-synonymous single-nucleotide polymorphisms (SNPs) were found. The non-synonymous SNPs, D109N, D391H, and L409R variants, are reported for the first time. Two haplotype blocks were constructed on exon 2 and exon 7. The specific haplotype, C391G424G449T473C515A542 on the exon 2 that carries the 391H variant, was tested against four other common haplotypes. Our results indicate that C391G424G449T473C515A542 haplotype was significantly associated with fecal egg shedding status in adult Turkish sheep (p-value, 0.044).


Assuntos
Infecções por Nematoides , Doenças dos Ovinos , Animais , Fezes , Trato Gastrointestinal , Nematoides , Infecções por Nematoides/genética , Infecções por Nematoides/veterinária , Contagem de Ovos de Parasitas/veterinária , Ovinos , Doenças dos Ovinos/genética , Doenças dos Ovinos/parasitologia , Carneiro Doméstico
2.
Anim Biotechnol ; 32(4): 507-518, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33606604

RESUMO

Indigenous breeds have a high level of genetic diversity that might contribute to develop animal breeds with desired traits such as disease resistance and high productivity. Major histocompatibility complex (MHC) is a key component of adaptive immune system and consists of highly polymorphic genes that take part in adaptive immune response and disease resistance. Exploring and understanding the effect of polymorphisms in MHC could be beneficial to future animal breeding strategies. In this study, we sequenced the highly polymorphic Exon2 of the ovine DRB1 gene using Sanger sequencing to explore the diversity of this gene in six indigenous Turkish sheep breeds and two crossbreeds. In total, 894 haplotypes from 447 sheep were investigated, and 69 different haplotypes including 27 novel ones were identified. Among the identified haplotypes there were common and breed specific haplotypes. There was a relatively high diversity of the alleles within indigenous breeds. Allelic diversity patterns were mostly associated with geographical differences. The results of this study highlight the genetic variation within indigenous breeds which has important implications for biodiversity and the adaptability of breeds to specific environments. There is value to further studies which include other genomic regions and traits, and these could guide breeding strategies.


Assuntos
Resistência à Doença , Variação Genética , Cadeias HLA-DRB1/genética , Ovinos , Animais , Genômica , Haplótipos , Ovinos/genética , Turquia
3.
Anim Biotechnol ; 32(3): 375-380, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32967565

RESUMO

Coccidiosis caused by Eimeria spp. is a protozoan disease prevalent in farm animals, and it is responsible for serious economic losses especially in young animals. It has been popular to breed disease-resistant animals due to the concern about food safety, animal welfare, and public health. Toll-like receptor (TLR) gene family plays a key role in the innate immune system participating in host-antigen interaction, therefore, they are candidate genes for breeding disease-resistant animals. In the present study, possible genetic associations between TLR4 gene coding variants and the presence of Eimeria spp. in adult Turkish sheep were investigated. For this purpose, the presence of Eimeria spp. in fecal samples from six native Turkish sheep were determined, and approximately 1450 bp region in the 3rd exon of the ovine TLR4 gene was sequenced. Ten nonsynonymous and four synonymous single nucleotide polymorphisms (SNPs) were detected in the targeted region. Statistical analyses revealed that the SNP at the codon at 356th position encoding Leucine instead of Phenylalanine (F356L) was significantly associated with the presence of Eimeria spp. It was found that the individuals carrying at least one Leucine amino acid sequence at this position have 2.3-fold more risk for the presence of Eimeria spp.


Assuntos
Coccidiose/veterinária , Eimeria , Doenças dos Ovinos/parasitologia , Receptor 4 Toll-Like/metabolismo , Animais , Coccidiose/epidemiologia , Coccidiose/parasitologia , Fezes/parasitologia , Predisposição Genética para Doença , Variação Genética , Ovinos , Doenças dos Ovinos/epidemiologia , Doenças dos Ovinos/genética , Receptor 4 Toll-Like/genética , Turquia/epidemiologia
4.
Anim Biotechnol ; 32(3): 381-387, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33356831

RESUMO

Scrapie is a transmissible spongiform encephalopathy caused by prions and leads to neurodegeneration in the Central Nervous System (CNS) of sheep and goats. Genetic resistance/susceptibility to scrapie is well studied and it is known that the variations of 136th, 154th and 171st codons at the ovine PRNP gene have a major effect on the development of the disease. Many studies demonstrated that selection for PRNP genotypes has not influenced other performance traits, nevertheless, there is a knowledge gap about the possible link between the PRNP gene and the status of the other important diseases that affect the sheep population worldwide. In the present study, we tested whether there is an association between scrapie-related PRNP genotypes and fecal egg count (FEC) of gastrointestinal nematodes in seven adult Turkish sheep breeds. For this purpose, FEC scores of studied sheep (n = 253) were determined and the same animals were genotyped for the PRNP gene. Finally, an association analysis was performed for scrapie resistant (ARR), susceptible (VRQ), and wild-type (ARQ) haplotypes. Based on our statistical analysis, it is concluded that PRNP genotypes have no positive or negative effect on the FEC scores of adult sheep.


Assuntos
Fezes/parasitologia , Haplótipos , Enteropatias Parasitárias/veterinária , Nematoides/isolamento & purificação , Infecções por Nematoides/veterinária , Proteínas Priônicas/genética , Animais , Predisposição Genética para Doença , Enteropatias Parasitárias/parasitologia , Infecções por Nematoides/genética , Infecções por Nematoides/parasitologia , Ovinos , Doenças dos Ovinos/genética , Doenças dos Ovinos/parasitologia
5.
Anim Biotechnol ; 32(4): 519-525, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33612073

RESUMO

Johne's disease is a chronic, contagious, zoonotic disease that affects numerous species including livestock and sometimes humans. The disease is globally distributed in sheep populations and caused by Mycobacterium avium Subsp. paratuberculosis (MAP). A previous genome-wide association study identified single nucleotide polymorphism (SNP) markers associated with OJD serostatus in CD109, PCP4, and SEMA3D genes. Our aim was to evaluate the same markers for association with OJD seroprevalence in Turkish sheep in a retrospective matched case-control study. The serological status for OJD in 1801 sheep was determined for four native and four composite breeds from three research flocks. One hundred eleven matched case-control pairs were constructed according to breed type and age from 1750 comingled ewes reared in the same environment. A Single Nucleotide Primer Extension (SNuPE) assay was designed to genotype PCP4-Intron 1, PCP4-3'UTR, SEMA3D, CD109-intron 2 and CD109-intron 8 markers and a McNemar's test was performed on the matched pairs. An association with these five markers was not detected with the OJD serostatus in Turkish sheep (power of detection, 0.95; odds ratio >3; McNemar's p < .05). Thus, a wider search may be needed to identify any major underlying genetic risk factors for OJD in Turkish sheep.


Assuntos
Paratuberculose , Doenças dos Ovinos , Ovinos , Animais , Antígenos CD/genética , Estudos de Casos e Controles , Feminino , Peptídeos e Proteínas de Sinalização Intercelular/genética , Proteínas do Tecido Nervoso/genética , Paratuberculose/epidemiologia , Paratuberculose/genética , Estudos Retrospectivos , Estudos Soroepidemiológicos , Ovinos/genética , Doenças dos Ovinos/genética
6.
BMC Cell Biol ; 17: 5, 2016 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-26831144

RESUMO

BACKGROUND: Gap junctions facilitate exchange of small molecules between adjacent cells, serving a crucial function for the maintenance of cellular homeostasis. Mutations in connexins, the basic unit of gap junctions, are associated with several human hereditary disorders. For example, mutations in connexin26 (Cx26) cause both non-syndromic deafness and syndromic deafness associated with skin abnormalities such as keratitis-ichthyosis-deafness (KID) syndrome. These mutations can alter the formation and function of gap junction channels through different mechanisms, and in turn interfere with various cellular processes leading to distinct disorders. The KID associated Cx26 mutations were mostly shown to result in elevated hemichannel activities. However, the effects of these aberrant hemichannels on cellular processes are recently being deciphered. Here, we assessed the effect of two Cx26 mutations associated with KID syndrome, Cx26I30N and D50Y, on protein biosynthesis and channel function in N2A and HeLa cells. RESULTS: Immunostaining experiments showed that Cx26I30N and D50Y failed to form gap junction plaques at cell-cell contact sites. Further, these mutations resulted in the retention of Cx26 protein in the Golgi apparatus. Examination of hemichannel function by fluorescent dye uptake assays revealed that cells with Cx26I30N and D50Y mutations had increased dye uptake compared to Cx26WT (wild-type) containing cells, indicating abnormal hemichannel activities. Cells with mutant proteins had elevated intracellular calcium levels compared to Cx26WT transfected cells, which were abolished by a hemichannel blocker, carbenoxolone (CBX), as measured by Fluo-3 AM loading and flow cytometry. CONCLUSIONS: Here, we demonstrated that Cx26I30N and D50Y mutations resulted in the formation of aberrant hemichannels that might result in elevated intracellular calcium levels, a process which may contribute to the hyperproliferative epidermal phenotypes of KID syndrome.


Assuntos
Conexinas/genética , Conexinas/metabolismo , Surdez/genética , Ictiose/genética , Ceratite/genética , Mutação de Sentido Incorreto , Cálcio , Conexina 26 , Surdez/metabolismo , Complexo de Golgi/genética , Complexo de Golgi/metabolismo , Humanos , Ictiose/metabolismo , Junções Intercelulares/genética , Junções Intercelulares/metabolismo , Ceratite/metabolismo , Transporte Proteico
7.
Sci Rep ; 14(1): 13072, 2024 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-38844604

RESUMO

Neonatal diarrhea presents a significant global challenge due to its multifactorial etiology, resulting in high morbidity and mortality rates, and substantial economic losses. While molecular-level studies on genetic resilience/susceptibility to neonatal diarrhea in farm animals are scarce, prior observations indicate promising research directions. Thus, the present study utilizes two genome-wide association approaches, pKWmEB and MLM, to explore potential links between genetic variations in innate immunity and neonatal diarrhea in Karacabey Merino lambs. Analyzing 707 lambs, including 180 cases and 527 controls, revealed an overall prevalence rate of 25.5%. The pKWmEB analysis identified 13 significant SNPs exceeding the threshold of ≥ LOD 3. Moreover, MLM detected one SNP (s61781.1) in the SLC22A8 gene (p-value, 1.85eE-7), which was co-detected by both methods. A McNemar's test was conducted as the final assessment to identify whether there are any major effective markers among the detected SNPs. Results indicate that four markers-oar3_OAR1_122352257, OAR17_77709936.1, oar3_OAR18_17278638, and s61781.1-have a substantial impact on neonatal diarrhea prevalence (odds ratio: 2.03 to 3.10; statistical power: 0.88 to 0.99). Therefore, we propose the annotated genes harboring three of the associated markers, TIAM1, YDJC, and SLC22A8, as candidate major genes for selective breeding against neonatal diarrhea.


Assuntos
Animais Recém-Nascidos , Diarreia , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único , Animais , Diarreia/genética , Diarreia/veterinária , Ovinos , Doenças dos Ovinos/genética
8.
Sci Rep ; 12(1): 13005, 2022 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-35906393

RESUMO

In recent years, phytochemicals have started to attract more attention due to their contribution to health and bioactivity. Microorganisms in the intestines of organisms contribute to the processing, function, and biotransformation of these substances. The silkworm (Bombyx mori) is one of the organisms used for the biotransformation of phytochemicals due to its controlled reproduction and liability to microbial manipulation. In this study, a bioactive compound, tormentic acid (TA), extracted from Sarcopoterium spinosum was used in the silkworm diet, and the alterations of intestinal microbiota of the silkworm were assessed. To do this, silkworms were fed on a diet with various tormentic acid content, and 16S metagenomic analysis was performed to determine the alterations in the gut microbiota profile of these organisms. Diet with different TA content did not cause a change in the bacterial diversity of the samples. A more detailed comparison between different feeding groups indicated increased abundance of bacteria associated with health, i.e., Intestinibacter spp., Flavonifractor spp., Senegalimassilia spp., through the utilization of bioactive substances such as flavonoids. In conclusion, it might be said that using TA as a supplementary product might help ameliorate the infected gut, promote the healthy gut, and relieve the undesirable effects of medicines on the gastrointestinal system.


Assuntos
Bombyx , Microbioma Gastrointestinal , Animais , Bactérias/genética , Bombyx/microbiologia , Metagenômica , Triterpenos
9.
Insects ; 13(7)2022 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-35886764

RESUMO

Honey bees need pollen and nectar sources to survive in nature. Particularly, having young bees in colonies is vital before wintering, and proper feeding is necessary to achieve this. In the present study, the effect of feeding with pollen sources of different protein content on colony performance, wintering ability and in-vitro longevity of colonies that weakened after feeding with pine honey in autumn, or that needed to enter the winter period, was investigated. The experiment was carried out in 48 colonies divided into six groups as follows: control, syrup, mixed pollen, Cistus creticus pollen (Pink rock-rose), Papaver somniferum pollen (Opium poppy), and commercial bee cake groups. In particular, the P. somniferum pollen group was different (p < 0.01) from the other experiment groups with the number of bee frames (3.44), the area with brood (1184.14 cm2) and the wintering ability of 92.19%. The effect of nutritional differences on survival was found to be statistically significant in vitro and this supports the colony results in the natural environment (p < 0.001). The P. somniferum group has the longest longevity with 23 days. Pollen preferences of honey bees were P. somniferum, C. creticus, and mixed pollen, respectively.

10.
Sci Rep ; 11(1): 14435, 2021 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-34262107

RESUMO

Visna/maedi (VM) is a multisystemic lentivirus infection of sheep that affecting sheep industry across the globe. TMEM154 gene has been identified to be a major VM-associated host gene, nevertheless, a recent study showed that the frequency of the VM-resistant TMEM154 haplotypes was very low or absent in indigenous sheep. Thus, the present study was designed to determine other possible co-receptors associated with VM. For this purpose, DRB1 gene, which is renowned for its role in host immune response against various diseases was targeted. A total number of 151 case-control matched pairs were constructed from 2266 serologically tested sheep. A broad range of DRB1 haplotype diversity was detected by sequence-based genotyping. Moreover, a novel 2 bp deletion (del) in the DRB1 intron 1 was identified. For the final statistic, the sheep carrying VM-resistant TMEM154 diplotypes were removed and a McNemar's test with a matched pairs experimental design was conducted. Consequently, it was identified for the first time that the 2 bp del variant is a genetic risk factor for VM (p value 0.002; chi-square 8.31; odds ratio 2.9; statistical power 0.90) in the dominant model. Thus, negative selection for 2 bp del variant could decrease VM infection risk in Turkish sheep.


Assuntos
Pneumonia Intersticial Progressiva dos Ovinos , Animais , Predisposição Genética para Doença , Haplótipos , Proteínas de Membrana/genética , Ovinos , Visna/genética
11.
Sci Rep ; 11(1): 7088, 2021 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-33782507

RESUMO

Ovine Johne's disease (OJD) is caused by Mycobacterium avium subsp. paratuberculosis (MAP) and carries a potential zoonotic risk for humans. Selective breeding strategies for reduced OJD susceptibility would be welcome tools in disease eradication efforts, if available. The Toll-like receptor 2 gene (TLR2) plays an important signaling role in immune response to MAP, and missense variants are associated with mycobacterial infections in mammals. Our aim was to identify and evaluate ovine TLR2 missense variants for association with OJD in Turkish sheep. Eleven TLR2 missense variants and 17 haplotype configurations were identified in genomic sequences of 221 sheep from 61 globally-distributed breeds. The five most frequent haplotypes were tested for OJD association in 102 matched pairs of infected and uninfected ewes identified in 2257 Turkish sheep. Ewes with one or two copies of TLR2 haplotypes encoding glutamine (Q) at position 650 (Q650) in the Tir domain were 6.6-fold more likely to be uninfected compared to ewes with arginine (R650) at that position (CI95 = 2.6 to 16.9, p-value = 3.7 × 10-6). The protective TLR2 Q650 allele was present in at least 25% of breeds tested and thus may facilitate selective breeding for sheep with reduced susceptibility to OJD.


Assuntos
Predisposição Genética para Doença , Haplótipos , Paratuberculose/genética , Doenças dos Ovinos/genética , Receptor 2 Toll-Like/genética , Animais , Ovinos , Turquia
12.
Front Genet ; 10: 926, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31636655

RESUMO

Lameness represents a significant challenge for the dairy cattle industry, resulting in economic losses and reduced animal health and welfare. The existence of underlying genomic variation for lameness associated traits has the potential to improve selection strategies by using genomic markers. Therefore, the aim of this study was to identify genomic regions and potential candidate genes associated with lameness traits. Lameness related lesions and digital cushion thickness were studied using records collected by our research team, farm records, and a combination of both. Genome-wide analyses were performed to identify significant genomic effects, and a combination of single SNP association analysis and regional heritability mapping was used to identify associated genomic regions. Significant genomic effects were identified for several lameness related traits: Two genomic regions were identified on chromosome 3 associated with digital dermatitis and interdigital hyperplasia, one genomic region on chromosome 23 associated with interdigital hyperplasia, and one genomic region on chromosome 2 associated with sole haemorrhage. Candidate genes in those regions are mainly related to immune response and fibroblast proliferation. Quantitative trait loci (QTL) identified in this study could enlighten the understanding of lameness pathogenesis, providing an opportunity to improve health and welfare in dairy cattle with the addition of these regions into selection programs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA