Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Nature ; 571(7763): 63-71, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31270481

RESUMO

Knowledge of connectivity in the nervous system is essential to understanding its function. Here we describe connectomes for both adult sexes of the nematode Caenorhabditis elegans, an important model organism for neuroscience research. We present quantitative connectivity matrices that encompass all connections from sensory input to end-organ output across the entire animal, information that is necessary to model behaviour. Serial electron microscopy reconstructions that are based on the analysis of both new and previously published electron micrographs update previous results and include data on the male head. The nervous system differs between sexes at multiple levels. Several sex-shared neurons that function in circuits for sexual behaviour are sexually dimorphic in structure and connectivity. Inputs from sex-specific circuitry to central circuitry reveal points at which sexual and non-sexual pathways converge. In sex-shared central pathways, a substantial number of connections differ in strength between the sexes. Quantitative connectomes that include all connections serve as the basis for understanding how complex, adaptive behavior is generated.


Assuntos
Caenorhabditis elegans/metabolismo , Conectoma , Sistema Nervoso/anatomia & histologia , Sistema Nervoso/metabolismo , Caracteres Sexuais , Animais , Comportamento Animal , Caenorhabditis elegans/citologia , Feminino , Cabeça/anatomia & histologia , Cabeça/inervação , Organismos Hermafroditas , Masculino , Microscopia Eletrônica , Atividade Motora , Movimento , Sistema Nervoso/citologia , Vias Neurais
2.
Nature ; 561(7721): 117-121, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30150774

RESUMO

Differences between female and male brains exist across the animal kingdom and extend from molecular to anatomical features. Here we show that sexually dimorphic anatomy, gene expression and function in the nervous system can be modulated by past experiences. In the nematode Caenorhabditis elegans, sexual differentiation entails the sex-specific pruning of synaptic connections between neurons that are shared by both sexes, giving rise to sexually dimorphic circuits in adult animals1. We discovered that starvation during juvenile stages is memorized in males to suppress the emergence of sexually dimorphic synaptic connectivity. These circuit changes result in increased chemosensory responsiveness in adult males following juvenile starvation. We find that an octopamine-mediated starvation signal dampens the production of serotonin (5-HT) to convey the memory of starvation. Serotonin production is monitored by a 5-HT1A serotonin receptor homologue that acts cell-autonomously to promote the pruning of sexually dimorphic synaptic connectivity under well-fed conditions. Our studies demonstrate how life history shapes neurotransmitter production, synaptic connectivity and behavioural output in a sexually dimorphic circuit.


Assuntos
Caenorhabditis elegans/citologia , Caenorhabditis elegans/fisiologia , Privação de Alimentos/fisiologia , Plasticidade Neuronal , Neurônios/metabolismo , Serotonina/metabolismo , Caracteres Sexuais , Transdução de Sinais , Envelhecimento/fisiologia , Animais , Comportamento Animal , Proteínas de Caenorhabditis elegans/metabolismo , Ingestão de Alimentos/fisiologia , Feminino , Masculino , Octopamina/metabolismo , Receptor 5-HT1A de Serotonina/metabolismo , Receptores de Serotonina/metabolismo , Serotonina/biossíntese , Fatores de Tempo
3.
Nature ; 533(7602): 206-11, 2016 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-27144354

RESUMO

Whether and how neurons that are present in both sexes of the same species can differentiate in a sexually dimorphic manner is not well understood. A comparison of the connectomes of the Caenorhabditis elegans hermaphrodite and male nervous systems reveals the existence of sexually dimorphic synaptic connections between neurons present in both sexes. Here we demonstrate sex-specific functions of these sex-shared neurons and show that many neurons initially form synapses in a hybrid manner in both the male and hermaphrodite pattern before sexual maturation. Sex-specific synapse pruning then results in the sex-specific maintenance of subsets of these connections. Reversal of the sexual identity of either the pre- or postsynaptic neuron alone transforms the patterns of synaptic connectivity to that of the opposite sex. A dimorphically expressed and phylogenetically conserved transcription factor is both necessary and sufficient to determine sex-specific connectivity patterns. Our studies reveal new insights into sex-specific circuit development.


Assuntos
Caenorhabditis elegans/citologia , Plasticidade Neuronal/fisiologia , Células Receptoras Sensoriais/citologia , Caracteres Sexuais , Sinapses/metabolismo , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/fisiologia , Sequência Conservada , Proteínas de Ligação a DNA , Transtornos do Desenvolvimento Sexual , Proteínas de Drosophila , Feminino , Masculino , Plasticidade Neuronal/genética , Células Receptoras Sensoriais/metabolismo , Maturidade Sexual/genética , Maturidade Sexual/fisiologia , Fatores de Transcrição/metabolismo
4.
PLoS Biol ; 16(1): e2004218, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29293491

RESUMO

One goal of modern day neuroscience is the establishment of molecular maps that assign unique features to individual neuron types. Such maps provide important starting points for neuron classification, for functional analysis, and for developmental studies aimed at defining the molecular mechanisms of neuron identity acquisition and neuron identity diversification. In this resource paper, we describe a nervous system-wide map of the potential expression sites of 244 members of the largest gene family in the C. elegans genome, rhodopsin-like (class A) G-protein-coupled receptor (GPCR) chemoreceptors, using classic gfp reporter gene technology. We cover representatives of all sequence families of chemoreceptor GPCRs, some of which were previously entirely uncharacterized. Most reporters are expressed in a very restricted number of cells, often just in single cells. We assign GPCR reporter expression to all but two of the 37 sensory neuron classes of the sex-shared, core nervous system. Some sensory neurons express a very small number of receptors, while others, particularly nociceptive neurons, coexpress several dozen GPCR reporter genes. GPCR reporters are also expressed in a wide range of inter- and motorneurons, as well as non-neuronal cells, suggesting that GPCRs may constitute receptors not just for environmental signals, but also for internal cues. We observe only one notable, frequent association of coexpression patterns, namely in one nociceptive amphid (ASH) and two nociceptive phasmid sensory neurons (PHA, PHB). We identified GPCRs with sexually dimorphic expression and several GPCR reporters that are expressed in a left/right asymmetric manner. We identified a substantial degree of GPCR expression plasticity; particularly in the context of the environmentally-induced dauer diapause stage when one third of all tested GPCRs alter the cellular specificity of their expression within and outside the nervous system. Intriguingly, in a number of cases, the dauer-specific alterations of GPCR reporter expression in specific neuron classes are maintained during postdauer life and in some case new patterns are induced post-dauer, demonstrating that GPCR gene expression may serve as traits of life history. Taken together, our resource provides an entry point for functional studies and also offers a host of molecular markers for studying molecular patterning and plasticity of the nervous system.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Células Quimiorreceptoras/fisiologia , Mapeamento Cromossômico/métodos , Animais , Padronização Corporal/genética , Padronização Corporal/fisiologia , Caenorhabditis elegans/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Genes Reporter , Fenótipo , Células Receptoras Sensoriais/fisiologia , Transcriptoma/genética
5.
Genetics ; 220(1)2022 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-34788806

RESUMO

The progression of animal development from embryonic to juvenile life depends on the coordination of organism-wide responses with environmental conditions. We found that two transcription factors that function in interneuron differentiation in Caenorhabditis elegans, fax-1, and unc-42, are required for arousal and progression from embryogenesis to larval life by potentiating insulin signaling. The combination of mutations in either transcription factor and a mutation in daf-2 insulin receptor results in a novel perihatching arrest phenotype; embryos are fully developed but inactive, often remaining trapped within the eggshell, and fail to initiate pharyngeal pumping. This pathway is opposed by an osmotic sensory response pathway that promotes developmental arrest and a sleep state at the end of embryogenesis in response to elevated salt concentration. The quiescent state induced by loss of insulin signaling or by osmotic stress can be reversed by mutations in genes that are required for sleep. Therefore, countervailing signals regulate late embryonic arousal and developmental progression to larval life, mechanistically linking the two responses. Our findings demonstrate a role for insulin signaling in an arousal circuit, consistent with evidence that insulin-related regulation may function in control of sleep states in many animals. The opposing quiescent arrest state may serve as an adaptive response to the osmotic threat from high salinity environments.


Assuntos
Caenorhabditis elegans , Animais
6.
Curr Biol ; 31(6): R297-R298, 2021 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-33756143

RESUMO

The sex-determining genes Double Sex and Fruitless are expressed in sexually differentiated neurons of the Drosophila brain. A tiny cluster of neurons, aDN cells, serves as a key circuit switch with sexually dimorphic properties: those of female flies respond to visual signals in males, while those of male flies respond to smell and humidity in females, supporting effective courtship and communal egg laying behaviors, respectively.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Encéfalo/metabolismo , Corte , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Feminino , Masculino , Caracteres Sexuais , Fatores de Transcrição/metabolismo
7.
Curr Biol ; 30(18): 3604-3616.e3, 2020 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-32707064

RESUMO

Sexual differentiation is controlled by diverse master regulatory factors across the animal kingdom. The transcription factor TRA-1 is the master regulator of somatic sexual differentiation in the nematode C. elegans, where it was reported to be expressed sex-specifically in the non-gonadal soma of hermaphrodites. Using a gfp-tagged allele of tra-1, we reveal unanticipated dynamics of TRA-1 protein expression in five dimensions: space, time, sex, environment, and subcellular localization. We show temporal regulation of TRA-1 protein accumulation in somatic tissues with different onsets of expression in different tissue types, indicating that sexual identity is not uniformly imposed. In hermaphrodites, neuronal expression is initially highly restricted and then increases variably between individuals during larval development until reaching panneuronal expression in the fourth larval stage. Unexpectedly, TRA-1 also accumulates in a subset of sex-shared neurons in the male. Additionally, a food signal is required to turn on TRA-1 expression in the intestine, and environmental stressors shut off TRA-1 expression in the entire non-gonadal soma, suggesting that somatic sexual differentiation may be affected by external conditions. We show that, in contrast to the protein degradation mechanisms that control TRA-1 accumulation in the adult, the temporal, sexual, and spatial specificities of TRA-1 accumulation during development are regulated transcriptionally. A nuclear hormone receptor, daf-12, previously implicated in developmental timing in C. elegans, contributes to temporal accumulation of TRA-1 in the nervous system. Our studies reveal a mosaic and dynamic nature of sexual identity acquisition and uncover hormonal control mechanisms for sexual differentiation of the brain.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiologia , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica , Receptores Citoplasmáticos e Nucleares/metabolismo , Diferenciação Sexual , Análise Espaço-Temporal , Fatores de Transcrição/metabolismo , Animais , Proteínas de Caenorhabditis elegans/genética , Proteínas de Ligação a DNA/genética , Receptores Citoplasmáticos e Nucleares/genética , Fatores de Transcrição/genética
8.
Elife ; 92020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-33021200

RESUMO

Sex-specific synaptic connectivity is beginning to emerge as a remarkable, but little explored feature of animal brains. We describe here a novel mechanism that promotes sexually dimorphic neuronal function and synaptic connectivity in the nervous system of the nematode Caenorhabditis elegans. We demonstrate that a phylogenetically conserved, but previously uncharacterized Doublesex/Mab-3 related transcription factor (DMRT), dmd-4, is expressed in two classes of sex-shared phasmid neurons specifically in hermaphrodites but not in males. We find dmd-4 to promote hermaphrodite-specific synaptic connectivity and neuronal function of phasmid sensory neurons. Sex-specificity of DMD-4 function is conferred by a novel mode of posttranslational regulation that involves sex-specific protein stabilization through ubiquitin binding to a phylogenetically conserved but previously unstudied protein domain, the DMA domain. A human DMRT homolog of DMD-4 is controlled in a similar manner, indicating that our findings may have implications for the control of sexual differentiation in other animals as well.


Assuntos
Proteínas de Caenorhabditis elegans , Neurônios/metabolismo , Caracteres Sexuais , Fatores de Transcrição , Ubiquitina/metabolismo , Animais , Comportamento Animal , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Transtornos do Desenvolvimento Sexual , Feminino , Técnicas de Inativação de Genes , Humanos , Masculino , Transmissão Sináptica/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
9.
Curr Biol ; 27(2): 199-209, 2017 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-28065609

RESUMO

Functional and anatomical sexual dimorphisms in the brain are either the result of cells that are generated only in one sex or a manifestation of sex-specific differentiation of neurons present in both sexes. The PHC neuron pair of the nematode C. elegans differentiates in a strikingly sex-specific manner. In hermaphrodites the PHC neurons display a canonical pattern of synaptic connectivity similar to that of other sensory neurons, but in males PHC differentiates into a densely connected hub sensory neuron/interneuron, integrating a large number of male-specific synaptic inputs and conveying them to both male-specific and sex-shared circuitry. We show that the differentiation into such a hub neuron involves the sex-specific scaling of several components of the synaptic vesicle machinery, including the vesicular glutamate transporter eat-4/VGLUT, induction of neuropeptide expression, changes in axonal projection morphology, and a switch in neuronal function. We demonstrate that these molecular and anatomical remodeling events are controlled cell autonomously by the phylogenetically conserved Doublesex homolog dmd-3, which is both required and sufficient for sex-specific PHC differentiation. Cellular specificity of dmd-3 action is ensured by its collaboration with non-sex-specific terminal selector-type transcription factors, whereas the sex specificity of dmd-3 action is ensured by the hermaphrodite-specific transcriptional master regulator of hermaphroditic cell identity tra-1, which represses the transcription of dmd-3 in hermaphrodite PHC. Taken together, our studies provide mechanistic insights into how neurons are specified in a sexually dimorphic manner.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/crescimento & desenvolvimento , Diferenciação Celular , Neurônios/citologia , Fatores de Transcrição/metabolismo , Animais , Caenorhabditis elegans/citologia , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Masculino , Neurônios/fisiologia , Caracteres Sexuais , Diferenciação Sexual , Sinapses/fisiologia , Fatores de Transcrição/genética
10.
Tissue Eng Part A ; 23(23-24): 1382-1393, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28537482

RESUMO

Bone tissue engineering requires the upregulation of several regenerative stages, including a critical early phase of angiogenesis. Previous studies have suggested that a sequential delivery of platelet-derived growth factor (PDGF) to bone morphogenetic protein-2 (BMP-2) could promote angiogenic tubule formation when delivered to in vitro cocultures of human umbilical vein endothelial cells (HUVECs) and human mesenchymal stem cells (hMSCs). However, it was previously unclear that this PDGF to BMP-2 delivery schedule will result in cell migration into the scaffolding system and affect the later expression of bone markers. Additionally, a controlled delivery system had not yet been engineered for programmed sequential presentation of this particular growth factor. By combining alginate matrices with calcium phosphate scaffolding, a programmed growth factor delivery schedule was achieved. Specifically, a combination of alginate microspheres, alginate hydrogels, and a novel blend of resorbable calcium phosphate-based cement (ReCaPP) was used. PDGF and BMP-2 were sequentially released from this hybrid calcium phosphate/alginate scaffold with the desired 3-day overlap in PDGF to BMP-2 delivery. Using a three-dimensional coculture model, we observed that this sequence of PDGF to BMP-2 delivery influenced both cellular infiltration and alkaline phosphatase (ALP) expression. It was found that the presence of early PDGF delivery increased the distance of cell infiltration into the calcium phosphate/alginate scaffolding in comparison to early BMP-2 delivery and simultaneous PDGF+BMP-2 delivery. It was also observed that hMSCs expressed a greater amount of ALP+ staining in response to scaffolds delivering the sequential PDGF to BMP-2 schedule, when compared with scaffolds delivering no growth factor, or PDGF alone. Importantly, hMSCs cultured with scaffolds releasing the PDGF to BMP-2 schedule showed similar amounts of ALP staining to hMSCs cultured with BMP-2 alone, suggesting that the sequential schedule of PDGF to BMP-2 presentation promotes differentiation of hMSCs toward an osteoblast phenotype while also increasing cellular infiltration of the scaffold.


Assuntos
Alginatos , Proteína Morfogenética Óssea 2 , Fosfatos de Cálcio , Diferenciação Celular/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Osteoblastos/metabolismo , Proteínas Proto-Oncogênicas c-sis , Alicerces Teciduais/química , Alginatos/química , Alginatos/farmacologia , Becaplermina , Proteína Morfogenética Óssea 2/química , Proteína Morfogenética Óssea 2/farmacologia , Fosfatos de Cálcio/química , Fosfatos de Cálcio/farmacologia , Preparações de Ação Retardada/química , Preparações de Ação Retardada/farmacologia , Ácido Glucurônico/química , Ácido Glucurônico/farmacologia , Ácidos Hexurônicos/química , Ácidos Hexurônicos/farmacologia , Células Endoteliais da Veia Umbilical Humana/citologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Células-Tronco Mesenquimais/citologia , Osteoblastos/citologia , Proteínas Proto-Oncogênicas c-sis/química , Proteínas Proto-Oncogênicas c-sis/farmacologia
11.
Elife ; 62017 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-28677525

RESUMO

A core principle of nervous system organization is the diversification of neuron classes into subclasses that share large sets of features but differ in select traits. We describe here a molecular mechanism necessary for motor neurons to acquire subclass-specific traits in the nematode Caenorhabditis elegans. Cholinergic motor neuron classes of the ventral nerve cord can be subdivided into subclasses along the anterior-posterior (A-P) axis based on synaptic connectivity patterns and molecular features. The conserved COE-type terminal selector UNC-3 not only controls the expression of traits shared by all members of a neuron class, but is also required for subclass-specific traits expressed along the A-P axis. UNC-3, which is not regionally restricted, requires region-specific cofactors in the form of Hox proteins to co-activate subclass-specific effector genes in post-mitotic motor neurons. This intersectional gene regulatory principle for neuronal subclass diversification may be conserved from nematodes to mice.


Assuntos
Caenorhabditis elegans/embriologia , Diferenciação Celular , Regulação da Expressão Gênica no Desenvolvimento , Neurônios Motores/fisiologia , Animais , Variação Biológica da População , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Homeodomínio/metabolismo , Camundongos , Fatores de Transcrição/metabolismo
12.
Tissue Eng Part A ; 22(21-22): 1296-1304, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27650131

RESUMO

A three-dimensional in vitro Matrigel plug was used as a model to explore delivery patterns of platelet-derived growth factor (PDGF) and bone morphogenetic protein-2 (BMP-2) to a coculture of human mesenchymal and endothelial cells. While BMP-2 is well recognized for its role in promoting fracture healing through proliferation and differentiation of osteoclast precursors, it is not a growth factor known to promote the process of angiogenesis, which is also critical for complete bone tissue repair. PDGF, in contrast, is a known regulator of angiogenesis, and also a powerful chemoattractant for osteoblast precursor cells. It has been suggested that presentation of PDGF followed by BMP may better promote vascularized bone tissue formation. Yet, it is unclear as to how cells would respond to various durations of delivery of each growth factor as well as to various amounts of overlap in presentation in terms of angiogenesis. Using a three-dimensional in vitro Matrigel plug model, we observed how various presentation schedules of PDGF and BMP-2 influenced tubule formation by human mesenchymal stem cells and human umbilical vascular endothelial cells. We observed that sequential presentation of PDGF to BMP-2 led to increased tubule formation over simultaneous delivery of these growth factors. Importantly, a 2-4 day overlap in the sequential presentation of PDGF and BMP-2 increased tubule formation as compared with groups with zero or complete growth factor overlap, suggesting that a moderate amount of angiogenic and osteogenic growth factor overlap may be beneficial for processes associated with angiogenesis.


Assuntos
Proteína Morfogenética Óssea 2/farmacologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Células-Tronco Mesenquimais/metabolismo , Neovascularização Fisiológica/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Fator de Crescimento Derivado de Plaquetas/farmacologia , Técnicas de Cocultura , Células Endoteliais da Veia Umbilical Humana/citologia , Humanos , Células-Tronco Mesenquimais/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA