Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Nanomedicine ; 53: 102706, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37633405

RESUMO

Primary myelofibrosis (PM) is one of the myeloproliferative neoplasm, where stem cell-derived clonal neoplasms was noticed. Diagnosis of this disease is based on: physical examination, peripheral blood findings, bone marrow morphology, cytogenetics, and molecular markers. However, the molecular marker of PM, which is a mutation in the JAK2V617F gene, was observed also in other myeloproliferative neoplasms such as polycythemia vera and essential thrombocythemia. Therefore, there is a need to find methods that provide a marker unique to PM and allow for higher accuracy of PM diagnosis and consequently the treatment of the disease. Continuing, in this study, we used Raman spectroscopy, Principal Components Analysis (PCA), and Partial Least Squares (PLS) analysis as helpful diagnostic tools for PM. Consequently, we used serum collected from PM patients, which were classified using clinical parameters of PM such as the dynamic international prognostic scoring system (DIPSS) for primary myelofibrosis plus score, the JAK2V617F mutation, spleen size, bone marrow reticulin fibrosis degree and use of hydroxyurea drug features. Raman spectra showed higher amounts of C-H, C-C and C-C/C-N and amide II and lower amounts of amide I and vibrations of CH3 groups in PM patients than in healthy ones. Furthermore, shifts of amides II and I vibrations in PM patients were noticed. Machine learning methods were used to analyze Raman regions: (i) 800 cm-1 and 1800 cm-1, (ii) 1600 cm-1-1700 cm-1, and (iii) 2700 cm-1-3000 cm-1 showed 100 % accuracy, sensitivity, and specificity. Differences in the spectral dynamic showed that differences in the amide II and amide I regions were the most significant in distinguishing between PM and healthy subjects. Importantly, until now, the efficacy of Raman spectroscopy has not been established in clinical diagnostics of PM disease using the correlation between Raman spectra and PM clinical prognostic scoring. Continuing, our results showed the correlation between Raman signals and bone marrow fibrosis, as well as JAKV617F. Consequently, the results revealed that Raman spectroscopy has a high potential for use in medical laboratory diagnostics to quantify multiple biomarkers simultaneously, especially in the selected Raman regions.


Assuntos
Policitemia Vera , Mielofibrose Primária , Humanos , Mielofibrose Primária/diagnóstico , Mielofibrose Primária/genética , Mielofibrose Primária/tratamento farmacológico , Soro , Análise Espectral Raman , Policitemia Vera/diagnóstico , Policitemia Vera/genética , Policitemia Vera/tratamento farmacológico , Hidroxiureia , Biomarcadores
2.
J Biophotonics ; 17(9): e202400162, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38978265

RESUMO

The study utilized Fourier transform infrared (FTIR) spectroscopy coupled with chemometrics to investigate protein composition and structural changes in the blood serum of patients with polycythemia vera (PV). Principal component analysis (PCA) revealed distinct biochemical properties, highlighting elevated absorbance of phospholipids, amides, and lipids in PV patients compared to healthy controls. Ratios of amide I/amide II and amide I/amide III indicated alterations in protein structures. Support vector machine analysis and receiver operating characteristic curves identified amide I as a crucial predictor of PV, achieving 100% accuracy, sensitivity, and specificity, while amide III showed a lower predictive value (70%). PCA analysis demonstrated effective differentiation between PV patients and controls, with key wavenumbers including amide II, amide I, and CH lipid vibrations. These findings underscore the potential of FTIR spectroscopy for diagnosing and monitoring PV.


Assuntos
Amidas , Biomarcadores , Policitemia Vera , Análise de Componente Principal , Espectroscopia de Infravermelho com Transformada de Fourier , Humanos , Policitemia Vera/sangue , Policitemia Vera/diagnóstico , Biomarcadores/sangue , Pessoa de Meia-Idade , Feminino , Masculino , Idoso , Máquina de Vetores de Suporte , Estudos de Casos e Controles , Adulto
3.
Cell Biochem Biophys ; 82(3): 2989-2999, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38847941

RESUMO

Essential thrombocythemia (ET) is a type of myeloproliferative neoplasm that increases the risk of thrombosis. To diagnose this disease, the analysis of mutations in the Janus Kinase 2 (JAK2), thrombopoietin receptor (MPL), or calreticulin (CALR) gene is recommended. Disease poses diagnostic challenges due to overlapping mutations with other neoplasms and the presence of triple-negative cases. This study explores the potential of Raman spectroscopy combined with machine learning for ET diagnosis. We assessed two laser wavelengths (785, 1064 nm) to differentiate between ET patients and healthy controls. The PCR results indicate that approximately 50% of patients in our group have a mutation in the JAK2 gene, while only 5% of patients harbor a mutation in the ASXL1 gene. Additionally, only one patient had a mutation in the IDH1 and one had a mutation in IDH2 gene. Consequently, patients having no mutations were also observed in our group, making diagnosis challenging. Raman spectra at 1064 nm showed lower amide, polysaccharide, and lipid vibrations in ET patients, while 785 nm spectra indicated significant decreases in amide II and C-H lipid vibrations. Principal Component Analysis (PCA) confirmed that both wavelengths could distinguish ET from healthy subjects. Support Vector Machine (SVM) analysis revealed that the 800-1800 cm-1 range provided the highest diagnostic accuracy, with 89% for 785 nm and 72% for 1064 nm. These findings suggest that FT-Raman spectroscopy, paired with multivariate and machine learning analyses, offers a promising method for diagnosing ET with high accuracy by detecting specific molecular changes in serum. Principal Component Analysis (PCA) confirmed that both wavelengths could distinguish ET from healthy subjects. Support Vector Machine (SVM) analysis revealed that the 800-1800 cm-1 range provided the highest diagnostic accuracy, with 89% for 785 nm and 72% for 1064 nm. These findings suggest that FT-Raman spectroscopy, paired with multivariate and machine learning analyses, offers a promising method for diagnosing ET with high accuracy by detecting specific molecular changes in serum.


Assuntos
Janus Quinase 2 , Mutação , Análise de Componente Principal , Análise Espectral Raman , Trombocitemia Essencial , Humanos , Análise Espectral Raman/métodos , Janus Quinase 2/genética , Trombocitemia Essencial/sangue , Trombocitemia Essencial/genética , Trombocitemia Essencial/diagnóstico , Feminino , Masculino , Pessoa de Meia-Idade , Adulto , Idoso , Lasers , Máquina de Vetores de Suporte , Isocitrato Desidrogenase/genética , Aprendizado de Máquina , Calreticulina/genética , Calreticulina/sangue , Estudos de Casos e Controles , Receptores de Trombopoetina/genética , Proteínas Repressoras
4.
Biochim Biophys Acta Gen Subj ; 1867(10): 130438, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37516257

RESUMO

Primary myelofibrosis (PM) is a myeloproliferative neoplasm characterized by stem cell-derived clonal neoplasms. Several factors are involved in diagnosing PM, including physical examination, peripheral blood findings, bone marrow morphology, cytogenetics, and molecular markers. Commonly gene mutations are used. Also, these gene mutations exist in other diseases, such as polycythemia vera and essential thrombocythemia. Hence, understanding the molecular mechanism and finding disease-related biomarker characteristics only for PM is crucial for the treatment and survival rate. For this purpose, blood samples of PM (n = 85) vs. healthy controls (n = 45) were collected for biochemical analysis, and, for the first time, Fourier Transform InfraRed (FTIR) spectroscopy measurement of dried PM and healthy patients' blood serum was analyzed. A Support Vector Machine (SVM) model with optimized hyperparameters was constructed using the grid search (GS) method. Then, the FTIR spectra of the biomolecular components of blood serum from PM patients were compared to those from healthy individuals using Principal Components Analysis (PCA). Also, an analysis of the rate of change of FTIR spectra absorption was studied. The results showed that PM patients have higher amounts of phospholipids and proteins and a lower amount of H-O=H vibrations which was visible. The PCA results indicated that it is possible to differentiate between dried blood serum samples collected from PM patients and healthy individuals. The Grid Search Support Vector Machine (GS-SVM) model showed that the prediction accuracy ranged from 0.923 to 1.00 depending on the FTIR range analyzed. Furthermore, it was shown that the ratio between α-helix and ß-sheet structures in proteins is 1.5 times higher in PM than in control people. The vibrations associated with the CO bond and the amide III region of proteins showed the highest probability value, indicating that these spectral features were significantly altered in PM patients compared to healthy ones' spectra. The results indicate that the FTIR spectroscope may be used as a technique helpful in PM diagnostics. The study also presents preliminary results from the first prospective clinical validation study.


Assuntos
Mielofibrose Primária , Soro , Humanos , Espectroscopia de Infravermelho com Transformada de Fourier , Máquina de Vetores de Suporte , Mielofibrose Primária/diagnóstico , Estudos Prospectivos , Proteínas/análise , Aprendizado de Máquina
5.
Photodiagnosis Photodyn Ther ; 42: 103572, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37060986

RESUMO

This study aimed to develop a novel approach for diagnosing Polycythemia Vera (PV), a stem cell-derived neoplasm of the myeloid lineage. The approach utilized Raman spectroscopy coupled with multivariate analysis to analyze blood serum samples collected from PV patients. The results showed that PV serum exhibited lower protein and lipid levels and structural changes in the functional groups that comprise proteins and lipids. The study also demonstrated differences in lipid biosynthesis and protein levels in PV serum. Using the Partial Least Square Discriminant Analysis (PLS-DA) model, Raman-based multivariate analysis achieved high accuracy rates of 96.49 and 93.04% in the training sets and 93.10% and 89.66% in the test sets for the 800-1800 cm-1 and 2700-3000 cm-1 ranges, respectively. The area under the curve (AUC) values of the test datasets were calculated as 0.92 and 0.89 in the 800-1800 cm-1 and 2700-3000 cm-1 spectral regions, respectively, demonstrating the effectiveness of the PLS-DA models for the diagnosis of PV. This study highlights the potential of Raman spectroscopy-based analysis in the early and accurate diagnosis of PV, enabling the application of effective treatment strategies.


Assuntos
Fotoquimioterapia , Soro , Humanos , Análise Espectral Raman/métodos , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes , Análise Discriminante , Lipídeos
6.
J Photochem Photobiol B ; 245: 112734, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37295134

RESUMO

Essential thrombocythemia (ET) reflects the transformation of a multipotent hematopoietic stem cell, but its molecular pathogenesis remains obscure. Nevertheless, tyrosine kinase, especially Janus kinase 2 (JAK2), has been implicated in myeloproliferative disorders other than chronic myeloid leukaemia. FTIR analysis was performed on the blood serum of 86 patients and 45 healthy volunteers as control with FTIR spectra-based machine learning methods and chemometrics. Thus, the study aimed to determine biomolecular changes and separation of ET and healthy control groups illustration by applying chemometrics and ML techniques to spectral data. The FTIR-based results showed that in ET disease with JAK2 mutation, there are alterations in functional groups associated with lipids, proteins and nucleic acids significantly. Moreover, in ET patients the lower amount of proteins with simultaneously higher amount of lipids was noted in comparison with the control one. Furthermore, the SVM-DA model showed 100% accuracy in calibration sets in both spectral regions and 100.0% and 96.43% accuracy in prediction sets for the 800-1800 cm-1 and 2700-3000 cm-1 spectral regions, respectively. While changes in the dynamic spectra showed that CH2 bending, amide II and CO vibrations could be used as a spectroscopy marker of ET. Finally, it was found a positive correlation between FTIR peaks and first bone marrow fibrosis degree, as well as the absence of JAK2 V617F mutation. The findings of this study contribute to a better understanding of the molecular pathogenesis of ET and identifying biomolecular changes and may have implications for early diagnosis and treatment of this disease.


Assuntos
Policitemia Vera , Trombocitemia Essencial , Humanos , Trombocitemia Essencial/diagnóstico , Trombocitemia Essencial/genética , Trombocitemia Essencial/patologia , Policitemia Vera/diagnóstico , Policitemia Vera/genética , Espectroscopia de Infravermelho com Transformada de Fourier , Patologia Molecular , Soro
7.
Leuk Res ; 111: 106725, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34634595

RESUMO

Variant Philadelphia (Ph) translocations involving chromosome 7 are rarely seen in Chronic Myeloid Leukemia (CML) patients. It is aimed to contribute new cases to the literature by reviewing the cases in our archive and shed light into the understanding of the role of chromosome 7 in CML. This study was carried out in 237 newly diagnosed CML patients with variant Ph translocations. Among the patients, those with variant Ph translocation involving chromosome 7 were evaluated in terms of clinical and genetic characteristics. Chromosome analysis was performed on 24 and 48 h of bone marrow cultures. FISH analysis was performed with BCR-ABL1 dual color dual fusion translocation probes. BCR-ABL1 transcript levels were analysed by QRT-PCR and results were reported as BCR-ABL1/ABL1 (BCR-ABL1 (IS) %) according to international scale. Four of the patients had variant Ph translocations including chromosome 7. The karyotypes were 46,XX,t(7;9;22)(p13;q34;q11); 46,XX,t(7;9;22)(p21;q34;q11); 46,XX,t(7;9;22)(q22;q34;q11) and 46,XY,t(7;9;22)(q22;q34;q11). The breakpoints demonstrated by cytogenetic analysis were confirmed by FISH analysis. Monitoring by QRT-PCR showed that patients with variant Ph translocation including 7p13 and 7p21 had a dramatic decrease in BCR-ABL1 levels resulting in complete hematological, complete cytogenetic and deep molecular responses. Despite achieving complete hematological, complete cytogenetic response in two patients with variant Philadelphia translocation, including 7q22, no major molecular response was achieved and both patients are still in the warning category. Response to tyrosine kinase inhibitör therapy may be associated with both the variant translocation mechanism and new gene interactions that occur due to the breakpoints of additional chromosomes involved in translocation.


Assuntos
Cromossomos Humanos Par 7/genética , Proteínas de Fusão bcr-abl/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Cromossomo Filadélfia , Translocação Genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Feminino , Seguimentos , Humanos , Cariotipagem , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Masculino , Pessoa de Meia-Idade , Prognóstico , Estudos Retrospectivos , Adulto Jovem
8.
Balkan Med J ; 30(2): 250-2, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25207110

RESUMO

BACKGROUND: Carriers of structural chromosomal rearrangements such as Robertsonian or reciprocal translocations have an increased risk of spontaneous abortion and producing offspring with genetic abnormalities. CASE REPORT: We report a man with balanced chromosomal translocations located at 6p22, and 7q22. His wife has a history of four spontaneous abortions. CONCLUSION: Couples with a history of abortions should be investigated cytogenetically, after other causes of miscarriages are excluded. The possibility of spontaneous abortions can be reduced with preimplantation genetic diagnosis (PGD) before embryo transfer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA