Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Cancer Res Commun ; 3(10): 2195-2210, 2023 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-37874216

RESUMO

Lipid droplets (LD) are dynamic organelles that serve as hubs of cellular metabolic processes. Emerging evidence shows that LDs also play a critical role in maintaining redox homeostasis and can mitigate lipid oxidative stress. In multiple cancers, including prostate cancer, LD accumulation is associated with cancer aggressiveness, therapy resistance, and poor clinical outcome. Prostate cancer arises as an androgen receptor (AR)-driven disease. Among its myriad roles, AR mediates the biosynthesis of LDs, induces autophagy, and modulates cellular oxidative stress in a tightly regulated cycle that promotes cell proliferation. The factors regulating the interplay of these metabolic processes downstream of AR remain unclear. Here, we show that Sigma1/SIGMAR1, a unique ligand-operated scaffolding protein, regulates LD metabolism in prostate cancer cells. Sigma1 inhibition triggers lipophagy, an LD selective form of autophagy, to prevent accumulation of LDs which normally act to sequester toxic levels of reactive oxygen species (ROS). This disrupts the interplay between LDs, autophagy, buffering of oxidative stress and redox homeostasis, and results in the suppression of cell proliferation in vitro and tumor growth in vivo. Consistent with these experimental results, SIGMAR1 transcripts are strongly associated with lipid metabolism and ROS pathways in prostate tumors. Altogether, these data reveal a novel, pharmacologically responsive role for Sigma1 in regulating the redox homeostasis required by oncogenic metabolic programs that drive prostate cancer proliferation. SIGNIFICANCE: To proliferate, cancer cells must maintain productive metabolic and oxidative stress (eustress) while mitigating destructive, uncontrolled oxidative stress (distress). LDs are metabolic hubs that enable adaptive responses to promote eustress. Targeting the unique Sigma1 protein can trigger distress by disrupting the LD-mediated homeostasis required for proliferation.


Assuntos
Gotículas Lipídicas , Neoplasias da Próstata , Masculino , Humanos , Gotículas Lipídicas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Neoplasias da Próstata/genética , Homeostase/fisiologia , Oxirredução
2.
Sci Data ; 9(1): 727, 2022 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-36435936

RESUMO

Seroprevalence studies provide useful information about the proportion of the population either vaccinated against SARS-CoV-2, previously infected with the virus, or both. Numerous studies have been conducted in the United States, but differ substantially by dates of enrollment, target population, geographic location, age distribution, and assays used. This can make it challenging to identify and synthesize available seroprevalence data by geographic region or to compare infection-induced versus combined infection- and vaccination-induced seroprevalence. To facilitate public access and understanding, the National Institutes of Health and the Centers for Disease Control and Prevention developed the COVID-19 Seroprevalence Studies Hub (COVID-19 SeroHub, https://covid19serohub.nih.gov/ ), a data repository in which seroprevalence studies are systematically identified, extracted using a standard format, and summarized through an interactive interface. Within COVID-19 SeroHub, users can explore and download data from 178 studies as of September 1, 2022. Tools allow users to filter results and visualize trends over time, geography, population, age, and antigen target. Because COVID-19 remains an ongoing pandemic, we will continue to identify and include future studies.


Assuntos
COVID-19 , SARS-CoV-2 , Estudos Soroepidemiológicos , Humanos , Estados Unidos , Vacinação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA