Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Int J Mol Sci ; 22(8)2021 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-33916973

RESUMO

NME7 (non-metastatic cells 7, nucleoside diphosphate kinase 7) is a member of a gene family with a profound effect on health/disease status. NME7 is an established member of the ciliome and contributes to the regulation of the microtubule-organizing center. We aimed to create a rat model to further investigate the phenotypic consequences of Nme7 gene deletion. The CRISPR/Cas9 nuclease system was used for the generation of Sprague Dawley Nme7 knock-out rats targeting the exon 4 of the Nme7 gene. We found the homozygous Nme7 gene deletion to be semi-lethal, as the majority of SDNme7-/- pups died prior to weaning. The most prominent phenotypes in surviving SDNme7-/- animals were hydrocephalus, situs inversus totalis, postnatal growth retardation, and sterility of both sexes. Thinning of the neocortex was histologically evident at 13.5 day of gestation, dilation of all ventricles was detected at birth, and an external sign of hydrocephalus, i.e., doming of the skull, was usually apparent at 2 weeks of age. Heterozygous SDNme7+/- rats developed normally; we did not detect any symptoms of primary ciliary dyskinesia. The transcriptomic profile of liver and lungs corroborated the histological findings, revealing defects in cell function and viability. In summary, the knock-out of the rat Nme7 gene resulted in a range of conditions consistent with the presentation of primary ciliary dyskinesia, supporting the previously implicated role of the centrosomally located Nme7 gene in ciliogenesis and control of ciliary transport.


Assuntos
Transtornos da Motilidade Ciliar/genética , Genes Letais , Predisposição Genética para Doença , Núcleosídeo-Difosfato Quinase/deficiência , Animais , Cílios/metabolismo , Cílios/ultraestrutura , Transtornos da Motilidade Ciliar/diagnóstico , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Estudos de Associação Genética , Genótipo , Imuno-Histoquímica , Núcleosídeo-Difosfato Quinase/genética , Núcleosídeo-Difosfato Quinase/metabolismo , Fenótipo , Ratos , Ratos Sprague-Dawley , Ratos Transgênicos , Transcriptoma , Microtomografia por Raio-X
2.
Molecules ; 24(11)2019 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-31159174

RESUMO

Expansions of trinucleotide repeats (TNRs) are associated with genetic disorders such as Friedreich's ataxia. The tumor suppressor p53 is a central regulator of cell fate in response to different types of insults. Sequence and structure-selective modes of DNA recognition are among the main attributes of p53 protein. The focus of this work was analysis of the p53 structure-selective recognition of TNRs associated with human neurodegenerative diseases. Here, we studied binding of full length p53 and several deletion variants to TNRs folded into DNA hairpins or loops. We demonstrate that p53 binds to all studied non-B DNA structures, with a preference for non-B DNA structures formed by pyrimidine (Py) rich strands. Using deletion mutants, we determined the C-terminal DNA binding domain of p53 to be crucial for recognition of such non-B DNA structures. We also observed that p53 in vitro prefers binding to the Py-rich strand over the purine (Pu) rich strand in non-B DNA substrates formed by sequence derived from the first intron of the frataxin gene. The binding of p53 to this region was confirmed using chromatin immunoprecipitation in human Friedreich's ataxia fibroblast and adenocarcinoma cells. Altogether these observations provide further evidence that p53 binds to TNRs' non-B DNA structures.


Assuntos
DNA/química , DNA/metabolismo , Ataxia de Friedreich/genética , Ataxia de Friedreich/metabolismo , Conformação de Ácido Nucleico , Expansão das Repetições de Trinucleotídeos , Repetições de Trinucleotídeos , Proteína Supressora de Tumor p53/metabolismo , Expressão Gênica , Humanos , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Pirimidinas , Proteínas Recombinantes , Proteína Supressora de Tumor p53/química
3.
Biochem Biophys Res Commun ; 456(1): 29-34, 2015 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-25446071

RESUMO

Site-specific DNA recognition and binding activity belong to common attributes of all three members of tumor suppressor p53 family proteins: p53, p63 and p73. It was previously shown that heavy metals can affect p53 conformation, sequence-specific binding and suppress p53 response to DNA damage. Here we report for the first time that cadmium, nickel and cobalt, which have already been shown to disturb various DNA repair mechanisms, can also influence p63 and p73 sequence-specific DNA binding activity and transactivation of p53 family target genes. Based on results of electrophoretic mobility shift assay and luciferase reporter assay, we conclude that cadmium inhibits sequence-specific binding of all three core domains to p53 consensus sequences and abolishes transactivation of several promoters (e.g. BAX and MDM2) by 50µM concentrations. In the presence of specific DNA, all p53 family core domains were partially protected against loss of DNA binding activity due to cadmium treatment. Effective cadmium concentration to abolish DNA-protein interactions was about two times higher for p63 and p73 proteins than for p53. Furthermore, we detected partial reversibility of cadmium inhibition for all p53 family members by EDTA. DTT was able to reverse cadmium inhibition only for p53 and p73. Nickel and cobalt abolished DNA-p53 interaction at sub-millimolar concentrations while inhibition of p63 and p73 DNA binding was observed at millimolar concentrations. In summary, cadmium strongly inhibits p53, p63 and p73 DNA binding in vitro and in cells in comparison to nickel and cobalt. The role of cadmium inhibition of p53 tumor suppressor family in carcinogenesis is discussed.


Assuntos
Cádmio/química , Cobalto/química , Proteínas de Ligação a DNA/química , DNA/química , Proteínas de Membrana/química , Níquel/química , Proteínas Nucleares/química , Proteínas Supressoras de Tumor/química , Linhagem Celular Tumoral , Ditiotreitol/química , Ácido Edético/química , Humanos , Metais/química , Metais Pesados/química , Ligação Proteica , Estrutura Terciária de Proteína , Ativação Transcricional , Proteína Tumoral p73 , Proteína Supressora de Tumor p53/química
4.
Cells ; 10(2)2021 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-33498263

RESUMO

In human cells, ribosomal DNA (rDNA) is arranged in ten clusters of multiple tandem repeats. Each repeat is usually described as consisting of two parts: the 13 kb long ribosomal part, containing three genes coding for 18S, 5.8S and 28S RNAs of the ribosomal particles, and the 30 kb long intergenic spacer (IGS). However, this standard scheme is, amazingly, often altered as a result of the peculiar instability of the locus, so that the sequence of each repeat and the number of the repeats in each cluster are highly variable. In the present review, we discuss the causes and types of human rDNA instability, the methods of its detection, its distribution within the locus, the ways in which it is prevented or reversed, and its biological significance. The data of the literature suggest that the variability of the rDNA is not only a potential cause of pathology, but also an important, though still poorly understood, aspect of the normal cell physiology.


Assuntos
DNA Ribossômico/genética , Variação Genética , Loci Gênicos , Humanos , Regiões Promotoras Genéticas/genética
5.
Biochimie ; 128-129: 83-91, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27422117

RESUMO

The tumor suppressor protein p53 is a key factor in genome stability and one of the most studied of DNA binding proteins. This is the first study on the interaction of wild-type p53 with guanine quadruplexes formed by the human telomere sequence. Using electromobility shift assay and ELISA, we show that p53 binding to telomeric G-quadruplexes increases with the number of telomeric repeats. Further, p53 strongly favors G-quadruplexes folded in potassium over those formed in sodium, thus indicating the telomeric G-quadruplex conformational selectivity of p53. The presence of the quadruplex-stabilizing ligand, N-methyl mesoporphyrin IX (NMM), increases p53 recognition of G-quadruplexes in potassium. Using deletion mutants and selective p53 core domain oxidation, both p53 DNA binding domains are shown to be crucial for telomeric G-quadruplex recognition.


Assuntos
DNA/química , Quadruplex G , Telômero/química , Proteína Supressora de Tumor p53/química , Sequência de Bases , Sítios de Ligação/genética , Ligação Competitiva , Dicroísmo Circular , DNA/genética , DNA/metabolismo , Ensaio de Desvio de Mobilidade Eletroforética , Ensaio de Imunoadsorção Enzimática , Humanos , Mesoporfirinas/química , Mutação , Oligonucleotídeos/química , Oligonucleotídeos/genética , Oligonucleotídeos/metabolismo , Potássio/química , Ligação Proteica , Sequências de Repetição em Tandem/genética , Telômero/genética , Telômero/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
6.
PLoS One ; 11(12): e0167439, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27907175

RESUMO

Triplex DNA is implicated in a wide range of biological activities, including regulation of gene expression and genomic instability leading to cancer. The tumor suppressor p53 is a central regulator of cell fate in response to different type of insults. Sequence and structure specific modes of DNA recognition are core attributes of the p53 protein. The focus of this work is the structure-specific binding of p53 to DNA containing triplex-forming sequences in vitro and in cells and the effect on p53-driven transcription. This is the first DNA binding study of full-length p53 and its deletion variants to both intermolecular and intramolecular T.A.T triplexes. We demonstrate that the interaction of p53 with intermolecular T.A.T triplex is comparable to the recognition of CTG-hairpin non-B DNA structure. Using deletion mutants we determined the C-terminal DNA binding domain of p53 to be crucial for triplex recognition. Furthermore, strong p53 recognition of intramolecular T.A.T triplexes (H-DNA), stabilized by negative superhelicity in plasmid DNA, was detected by competition and immunoprecipitation experiments, and visualized by AFM. Moreover, chromatin immunoprecipitation revealed p53 binding T.A.T forming sequence in vivo. Enhanced reporter transactivation by p53 on insertion of triplex forming sequence into plasmid with p53 consensus sequence was observed by luciferase reporter assays. In-silico scan of human regulatory regions for the simultaneous presence of both consensus sequence and T.A.T motifs identified a set of candidate p53 target genes and p53-dependent activation of several of them (ABCG5, ENOX1, INSR, MCC, NFAT5) was confirmed by RT-qPCR. Our results show that T.A.T triplex comprises a new class of p53 binding sites targeted by p53 in a DNA structure-dependent mode in vitro and in cells. The contribution of p53 DNA structure-dependent binding to the regulation of transcription is discussed.


Assuntos
Proteínas de Ligação a DNA/genética , DNA/genética , Ativação Transcricional/genética , Proteína Supressora de Tumor p53/genética , Sítios de Ligação , DNA/química , Proteínas de Ligação a DNA/química , Humanos , Conformação de Ácido Nucleico , Motivos de Nucleotídeos/genética , Plasmídeos/genética , Regiões Promotoras Genéticas , Sequências Reguladoras de Ácido Nucleico/genética , Deleção de Sequência/genética , Proteína Supressora de Tumor p53/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA