RESUMO
Small molecules are components of fungal extracellular vesicles (EVs), but their biological roles are only superficially known. NOP16 is a eukaryotic gene that is required for the activity of benzimidazoles against Cryptococcus deuterogattii. In this study, during the phenotypic characterization of C. deuterogattii mutants expected to lack NOP16 expression, we observed a reduced EV production. Whole-genome sequencing, RNA-Seq, and cellular proteomics revealed that, contrary to our initial findings, these mutants expressed Nop16 but exhibited altered expression of 14 genes potentially involved in sugar transport. Based on this observation, we designated these mutant strains as Past1 and Past2, representing potentially altered sugar transport. Analysis of the small molecule composition of EVs produced by wild-type cells and the Past1 and Past2 mutant strains revealed not only a reduced number of EVs but also an altered small molecule composition. In a Galleria mellonella model of infection, the Past1 and Past2 mutant strains were hypovirulent. The hypovirulent phenotype was reverted when EVs produced by wild-type cells, but not mutant EVs, were co-injected with the mutant cells in G. mellonella. These results connect EV biogenesis, cargo, and cryptococcal virulence.
RESUMO
Verticillins are epipolythiodioxopiperazine alkaloids isolated from a fungus with nanomolar anti-tumor activity in high-grade serous ovarian cancer (HGSOC). HGSOC is the fifth leading cause of death in women, and natural products continue to be an inspiration for new drug entities to help tackle chemoresistance. Verticillin D was recently found in a new fungal strain and compared to verticillin A. Both compounds exhibited nanomolar cytotoxic activity against OVCAR4 and OVCAR8 HGSOC cell lines, significantly reduced 2D foci and 3D spheroids, and induced apoptosis. In addition, verticillin A and verticillin D reduced tumor burden in vivo using OVCAR8 xenografts in the peritoneal space as a model. Unfortunately, mice treated with verticillin D displayed signs of liver toxicity. Tolerability studies to optimize verticillin A formulation for in vivo delivery were performed and compared to a semi-synthetic succinate version of verticillin A to monitor bioavailability in athymic nude females. Formulation of verticillins achieved tolerable drug delivery. Thus, formulation studies are effective at improving tolerability and demonstrating efficacy for verticillins.
Assuntos
Antineoplásicos , Cistadenocarcinoma Seroso , Neoplasias Ovarianas , Feminino , Humanos , Camundongos , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Indóis/uso terapêutico , Cistadenocarcinoma Seroso/tratamento farmacológico , Cistadenocarcinoma Seroso/metabolismo , Cistadenocarcinoma Seroso/patologia , Neoplasias Ovarianas/patologia , Linhagem Celular TumoralRESUMO
Pleurotus ostreatus is an edible fungus with high nutritional value that uses industrial and agricultural lignocellulosic residues as substrates for growth and reproduction. Understanding their growth metabolic dynamics on agro-industrial wastes would help to develop economically viable and eco-friendly biotechnological strategies for food production. Thus, we used UHPLC/MS/MS and GNPS as an innovative approach to investigate the chemical composition of two strains of P. ostreatus, coded as BH (Black Hirataki) and WH (White Hirataki), grown on sisal waste mixture (SW) supplemented with 20 % cocoa almond tegument (CAT) or 20 % of wheat bran (WB). Metabolite dereplication allowed the identification of 53 metabolites, which included glycerophospholipids, fatty acids, monoacylglycerols, steroids, carbohydrates, amino acids, and flavonoids. This is the first report of the identification of these compounds in P. ostreatus, except for the steroid ergosterol. Most of the metabolites described in this work possess potential biological activities, which support the nutraceutical properties of P. ostreatus. Thus, the results of this study provide essential leads to the understanding of white-rot fungi chemical plasticity aiming at developing alternative biotechnologies strategies for waste recycling.
Assuntos
Pleurotus , Prunus dulcis , Pleurotus/química , Pleurotus/metabolismo , Resíduos Industriais , Fibras na Dieta/metabolismo , Espectrometria de Massas em Tandem , Suplementos NutricionaisRESUMO
Small molecules are components of fungal extracellular vesicles (EVs), but their biological roles are only superficially known. NOP16 is a eukaryotic gene that is required for the activity of benzimidazoles against Cryptococcus deuterogattii. In this study, during the phenotypic characterization of C. deuterogattii mutants lacking NOP16 expression, we observed that this gene was required for EV production. Analysis of the small molecule composition of EVs produced by wild-type cells and two independent nop16Δ mutants revealed that the deletion of NOP16 resulted not only in a reduced number of EVs but also an altered small molecule composition. In a Galleria mellonella model of infection, the nop16Δ mutants were hypovirulent. The hypovirulent phenotype was reverted when EVs produced by wild-type cells, but not mutant EVs, were coinjected with the nop16Δ cells in G. mellonella. These results reveal a role for NOP16 in EV biogenesis and cargo, and also indicate that the composition of EVs is determinant for cryptococcal virulence.