Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Dev Dyn ; 252(4): 483-494, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36495293

RESUMO

BACKGROUND: Frem1 has been linked to human face shape variation, dysmorphology, and malformation, but little is known about its regulation and biological role in facial development. RESULTS: During midfacial morphogenesis in mice, we observed Frem1 expression in the embryonic growth centers that form the median upper lip, nose, and palate. Expansive spatial gradients of Frem1 expression in the cranial neural crest cell (cNCC) mesenchyme of these tissues suggested transcriptional regulation by a secreted morphogen. Accordingly, Frem1 expression paralleled that of the conserved Sonic Hedgehog (Shh) target gene Gli1 in the cNCC mesenchyme. Suggesting direct transcriptional regulation by Shh signaling, we found that Frem1 expression is induced by SHH ligand stimulation or downstream pathway activation in cNCCs and observed GLI transcription factor binding at the Frem1 transcriptional start site during midfacial morphogenesis. Finally, we found that FREM1 is sufficient to induce cNCC proliferation in a concentration-dependent manner and that Shh pathway antagonism reduces Frem1 expression during pathogenesis of midfacial hypoplasia. CONCLUSIONS: By demonstrating that the Shh signaling pathway regulates Frem1 expression in cNCCs, these findings provide novel insight into the mechanisms underlying variation in midfacial morphogenesis.


Assuntos
Proteínas Hedgehog , Crista Neural , Camundongos , Animais , Humanos , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Morfogênese/genética , Transdução de Sinais/fisiologia , Mesoderma/metabolismo , Proteínas da Matriz Extracelular/metabolismo
2.
Development ; 147(21)2020 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-32680836

RESUMO

Developmental biologists rely on genetics-based approaches to understand the origins of congenital abnormalities. Recent advancements in genomics have made it easier than ever to investigate the relationship between genes and disease. However, nonsyndromic birth defects often exhibit non-Mendelian inheritance, incomplete penetrance or variable expressivity. The discordance between genotype and phenotype indicates that extrinsic factors frequently impact the severity of genetic disorders and vice versa. Overlooking gene-environment interactions in birth defect etiology limits our ability to identify and eliminate avoidable risks. We present mouse models of sonic hedgehog signaling and craniofacial malformations to illustrate both the importance of and current challenges in resolving gene-environment interactions in birth defects. We then prescribe approaches for overcoming these challenges, including use of genetically tractable and environmentally responsive in vitro systems. Combining emerging technologies with molecular genetics and traditional animal models promises to advance our understanding of birth defect etiology and improve the identification and protection of vulnerable populations.


Assuntos
Anormalidades Congênitas/etiologia , Anormalidades Congênitas/genética , Interação Gene-Ambiente , Animais , Anormalidades Craniofaciais/genética , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Humanos , Transdução de Sinais/genética
3.
Int J Toxicol ; 42(1): 19-36, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36523256

RESUMO

Liver responses are the most common endpoints used as the basis for setting exposure standards. Liver hepatocytes play a vital role in biotransformation of xenobiotics, but non-parenchymal cells (NPCs) in the liver are also involved in certain liver responses. Development of in vitro systems that more faithfully capture liver responses to reduce reliance on animals is a major focus of New Approach Methodology (NAMs). Since rodent regulatory studies are frequently the sole source safety assessment data, mode-of-action data, and used for risk assessments, in vitro rodent models that reflect in vivo responses need to be developed to reduce reliance on animal models. In the work presented in this paper, we developed a 2-D hepatocyte monoculture and 2-D liver cell co-culture system using rat liver cells. These models were assessed for conditions for short-term stability of the cultures and phenotypic and transcriptomic responses of 2 prototypic hepatotoxicants compounds - acetaminophen and phenobarbital. The optimized multi-cellular 2-D culture required use of freshly prepared hepatocytes and NPCs from a single rat, a 3:1 ratio of hepatocytes to NPCs and growth medium using 50% Complete Williams E medium (WEM) and 50% Endothelial Cell Medium (ECM). The transcriptomic responses of the 2 model systems to PB were compared to previous studies from TG-Gates on the gene expression changes in intact rats and the co-culture model responses were more representative of the in vivo responses. Transcriptomic read-outs promise to move beyond conventional phenotypic evaluations with these in vitro NAMs and provide insights about modes of action.


Assuntos
Hepatócitos , Fígado , Ratos , Animais , Técnicas de Cocultura , Hepatócitos/metabolismo , Fígado/metabolismo , Acetaminofen/toxicidade , Modelos Biológicos , Células Cultivadas
4.
Toxicol Appl Pharmacol ; 387: 114774, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31783037

RESUMO

Chemical risk assessment relies on toxicity tests that require significant numbers of animals, time and costs. For the >30,000 chemicals in commerce, the current scale of animal testing is insufficient to address chemical safety concerns as regulatory and product stewardship considerations evolve to require more comprehensive understanding of potential biological effects, conditions of use, and associated exposures. We demonstrate the use of a multi-level new approach methodology (NAMs) strategy for hazard- and risk-based prioritization to reduce animal testing. A Level 1/2 chemical prioritization based on estrogen receptor (ER) activity and metabolic activation using ToxCast data was used to select 112 chemicals for testing in a Level 3 human uterine cell estrogen response assay (IKA assay). The Level 3 data were coupled with quantitative in vitro to in vivo extrapolation (Q-IVIVE) to support bioactivity determination (as a surrogate for hazard) in a tissue-specific context. Assay AC50s and Q-IVIVE were used to estimate human equivalent doses (HEDs), and HEDs were compared to rodent uterotrophic assay in vivo-derived points of departure (PODs). For substances active both in vitro and in vivo, IKA assay-derived HEDs were lower or equivalent to in vivo PODs for 19/23 compounds (83%). Activity exposure relationships were calculated, and the IKA assay was as or more protective of human health than the rodent uterotrophic assay for all IKA-positive compounds. This study demonstrates the utility of biologically relevant fit-for-purpose assays and supports the use of a multi-level strategy for chemical risk assessment.


Assuntos
Alternativas ao Uso de Animais/métodos , Disruptores Endócrinos/toxicidade , Ensaios de Triagem em Larga Escala/métodos , Testes de Toxicidade/métodos , Útero/efeitos dos fármacos , Animais , Bioensaio/métodos , Técnicas de Cultura de Células , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Simulação por Computador , Estudos de Viabilidade , Feminino , Humanos , Modelos Biológicos , Ratos , Medição de Risco/métodos , Útero/citologia
5.
Toxicol Appl Pharmacol ; 355: 112-126, 2018 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-29782964

RESUMO

Rising obesity rates worldwide have socio-economic ramifications. While genetics, diet, and lack of exercise are major contributors to obesity, environmental factors may enhance susceptibility through disruption of hormone homeostasis and metabolic processes. The obesogen hypothesis contends that chemical exposure early in development may enhance adipocyte differentiation, thereby increasing the number of adipocytes and predisposing for obesity and metabolic disease. We previously developed a primary human adipose stem cell (hASC) assay to evaluate the effect of environmental chemicals on PPARG-dependent adipogenesis. Here, the assay was modified to determine the effects of chemicals on the glucocorticoid receptor (GR) pathway. In differentiation cocktail lacking the glucocorticoid agonist dexamethasone (DEX), hASCs do not differentiate into adipocytes. In the presence of GR agonists, adipocyte maturation was observed using phenotypic makers for lipid accumulation, adipokine secretion, and expression of key genes. To evaluate the role of environmental compounds on adipocyte differentiation, progenitor cells were treated with 19 prioritized compounds previously identified by ToxPi as having GR-dependent bioactivity, and multiplexed assays were used to confirm a GR-dependent mode of action. Five chemicals were found to be strong agonists. The assay was also modified to evaluate GR-antagonists, and 8/10 of the hypothesized antagonists inhibited adipogenesis. The in vitro bioactivity data was put into context with extrapolated human steady state concentrations (Css) and clinical exposure data (Cmax). These data support using a human adipose-derived stem cell differentiation assay to test the potential of chemicals to alter human GR-dependent adipogenesis.


Assuntos
Adipogenia/efeitos dos fármacos , Receptores de Glucocorticoides/efeitos dos fármacos , Adipócitos/efeitos dos fármacos , Adipocinas/metabolismo , Diferenciação Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Dexametasona/farmacologia , Proteínas de Ligação a Ácido Graxo/biossíntese , Expressão Gênica/efeitos dos fármacos , Humanos , L-Lactato Desidrogenase/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Receptores de Glucocorticoides/agonistas , Receptores de Glucocorticoides/antagonistas & inibidores , Células-Tronco/efeitos dos fármacos
6.
Toxicol Rep ; 11: 310-317, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37789951

RESUMO

Piperonyl butoxide (PBO) is a popular insecticide synergist present in thousands of commercial, agricultural, and household products. PBO inhibits cytochrome P450 activity, impairing the ability of insects to detoxify insecticides. PBO was recently discovered to also inhibit Sonic hedgehog signaling, a pathway required for embryonic development, and rodent studies have demonstrated the potential for in utero PBO exposure to cause structural malformations of the brain, face, and limbs, or more subtle neurodevelopmental abnormalities. The current understanding of the pharmacokinetics of PBO in mice is limited, particularly with respect to dosing paradigms associated with developmental toxicity. To establish a pharmacokinetic (PK) model for oral exposure, PBO was administered to female C57BL/6J mice acutely by oral gavage (22-1800 mg/kg) or via diet (0.09 % PBO in chow). Serum and adipose samples were collected, and PBO concentrations were determined by HPLC-MS/MS. The serum concentrations of PBO were best fit by a linear one-compartment model. PBO concentrations in visceral adipose tissue greatly exceeded those in serum. PBO concentrations in both serum and adipose tissue decreased quickly after cessation of dietary exposure. The elimination half-life of PBO in the mouse after gavage dosing was 6.5 h (90 % CI 4.7-9.5 h), and systemic oral clearance was 83.3 ± 20.5 mL/h. The bioavailability of PBO in chow was 41 % that of PBO delivered in olive oil by gavage. Establishment of this PK model provides a foundation for relating PBO concentrations that cause developmental toxicity in the rodent models to Sonic hedgehog signaling pathway inhibition.

7.
Chemosphere ; 264(Pt 1): 128414, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33007564

RESUMO

Piperonyl butoxide (PBO) is a semisynthetic chemical present in hundreds of pesticide formulations used in agricultural, commercial, and residential settings. PBO acts as a pesticide synergist by inhibiting insect cytochrome P450 enzymes and is often present at much higher concentrations than active insecticidal ingredients. PBO was recently discovered to also inhibit Sonic hedgehog (Shh) signaling, a key molecular pathway in embryonic development and in brain and face morphogenesis. Recent animal model studies have shown that in utero PBO exposure can cause overt craniofacial malformations or more subtle neurodevelopmental abnormalities. Related adverse developmental outcomes in humans are etiologically heterogeneous, and, while studies are limited, PBO exposure during pregnancy has been linked to neurodevelopmental deficits. Contextualized in PBO's newly recognized mechanism as a Shh signaling inhibitor, these findings support more rigorous examination of the developmental toxicity of PBO and its potential contribution to etiologically complex human birth defects. In this review, we highlight environmental sources of human PBO exposure and summarize existing animal studies examining the developmental impact of prenatal PBO exposure. Also presented are critical knowledge gaps in our understanding of PBO's pharmacokinetics and potential role in gene-environment and environment-environment interactions that should be addressed to better understand the human health impact of environmental PBO exposure.


Assuntos
Inseticidas , Praguicidas , Animais , Desenvolvimento Embrionário , Feminino , Proteínas Hedgehog , Humanos , Morfogênese , Butóxido de Piperonila/toxicidade , Gravidez
8.
Front Cell Dev Biol ; 9: 621442, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33634122

RESUMO

Paracrine signaling in the tissue microenvironment is a central mediator of morphogenesis, and modeling this dynamic intercellular activity in vitro is critical to understanding normal and abnormal development. For example, Sonic Hedgehog (Shh) signaling is a conserved mechanism involved in multiple developmental processes and strongly linked to human birth defects including orofacial clefts of the lip and palate. SHH ligand produced, processed, and secreted from the epithelial ectoderm is shuttled through the extracellular matrix where it binds mesenchymal receptors, establishing a gradient of transcriptional response that drives orofacial morphogenesis. In humans, complex interactions of genetic predispositions and environmental insults acting on diverse molecular targets are thought to underlie orofacial cleft etiology. Consequently, there is a need for tractable in vitro approaches that model this complex cellular and environmental interplay and are sensitive to disruption across the multistep signaling cascade. We developed a microplate-based device that supports an epithelium directly overlaid onto an extracellular matrix-embedded mesenchyme, mimicking the basic tissue architecture of developing orofacial tissues. SHH ligand produced from the epithelium generated a gradient of SHH-driven transcription in the adjacent mesenchyme, recapitulating the gradient of pathway activity observed in vivo. Shh pathway activation was antagonized by small molecule inhibitors of epithelial secretory, extracellular matrix transport, and mesenchymal sensing targets, supporting the use of this approach in high-content chemical screening of the complete Shh pathway. Together, these findings demonstrate a novel and practical microphysiological model with broad utility for investigating epithelial-mesenchymal interactions and environmental signaling disruptions in development.

9.
Chemosphere ; 288(Pt 2): 132598, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34666071
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA