RESUMO
Despite some clinical success with antibody-drug conjugates (ADCs) in patients with solid tumors and hematological malignancies, improvements in ADC design are still desirable due to the narrow therapeutic window of these compounds. Tumor-targeting antibody fragments have distinct advantages over monoclonal antibodies, including more rapid tumor accumulation and enhanced penetration, but are subject to rapid clearance. Half-life extension technologies such as PEGylation and albumin-binding domains (ABDs) have been widely used to improve the pharmacokinetics of many different types of biologics. PEGylation improves pharmacokinetics by increasing hydrodynamic size to reduce renal clearance, whereas ABDs extend half-life via FcRn-mediated recycling. In this study, we used an anti-oncofetal antigen 5T4 diabody conjugated with a highly potent cytotoxic pyrrolobenzodiazepine (PBD) warhead to assess and compare the effects of PEGylation and albumin binding on the in vivo efficacy of antibody fragment drug conjugates. Conjugation of 2× PEG20K to a diabody improved half-life from 40 min to 33 h, and an ABD-diabody fusion protein exhibited a half-life of 45 h in mice. In a xenograft model of breast cancer MDA-MB-436, the ABD-diabody-PBD showed greater tumor growth suppression and better tolerability than either PEG-diabody-PBD or diabody-PBD. These results suggest that the mechanism of half-life extension is an important consideration for designing cytotoxic antitumor agents.
Assuntos
Antineoplásicos/uso terapêutico , Imunoconjugados/uso terapêutico , Animais , Antineoplásicos/química , Antineoplásicos/farmacocinética , Ligação Competitiva , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Ensaio de Imunoadsorção Enzimática , Feminino , Meia-Vida , Humanos , Imunoconjugados/química , Imunoconjugados/farmacocinética , Camundongos , Camundongos Nus , Polietilenoglicóis/química , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Oxytocin (OT) is an exciting potential therapeutic agent, but it is highly sensitive to modification and suffers extensive degradation at elevated temperature and in vivo. Here we report studies towards OT analogs with favorable selectivity, affinity and potency towards the oxytocin receptor (OTR), in addition to improving stability of the peptide by bridging the disulfide region with substituted dibromo-xylene analogs. We found a sensitive structure-activity relationship in which meta-cyclized analogs (dOTmeta) gave highest affinity (50â¯nM Ki), selectivity (34-fold), and agonist potency (34â¯nM EC50, 87-fold selectivity) towards OTR. Surprisingly, ortho-cyclized analogs demonstrated OTR and vasopressin V1a receptor subtype affinity (220â¯nM and 69â¯nM, respectively) and pharmacological activity (294â¯nM and 35â¯nM, respectively). V1a binding and selectivity for ortho-cyclized peptides could be improved 6-fold by substituting a neutral residue at position 8 with a basic amino acid, providing potent antagonists (14â¯nM IC50) that displayed no activation of the OTR. Furthermore, xylene-bridged analogs demonstrated increased stability compared to OT at elevated temperature, demonstrating promising therapeutic potential for these analogs which warrants further study.
Assuntos
Ocitocina/análogos & derivados , Peptídeos/síntese química , Vasopressinas/química , Técnicas de Química Sintética , Estabilidade de Medicamentos , Humanos , Concentração Inibidora 50 , Peptídeos/química , Peptídeos/farmacologia , Receptores de Ocitocina/agonistas , Receptores de Ocitocina/química , Receptores de Vasopressinas/agonistas , Receptores de Vasopressinas/química , Xilenos/químicaRESUMO
Antibody-drug conjugate (ADC) research has typically focused on the release of highly potent cytotoxic agents to achieve antitumor efficacy. However, recently approved ADCs trastuzumab deruxtecan and sacituzumab govitecan release lower-potency topoisomerase inhibitors. This has prompted interest in ADCs that release lower-potency cytotoxic drugs to potentially enhance therapeutic index and reduce unwanted toxicity. Pyrrolobenzodiazepine (PBD) dimer ADCs have been widely investigated in human clinical trials, which have focused on high-potency PBDs. In this study, we evaluated five ADCs that release the low-potency PBD dimer SG3650. The relatively low clogD for this agent facilitated higher drug-to-antibody ratio (DAR) conjugation without the need for antibody engineering or functionalization of the drug. The rank order of potency for DAR 2 site-specific ADCs (conjugated at the C239i position) matched the order for the corresponding free drugs in vitro. Despite free drug SG3650 being inactive in vivo, the DAR 2 ADCs derived from the corresponding drug-linker SG3584 showed antitumor efficacy in solid (anti-HER2) and hematologic (anti-CD22) xenograft models. Antitumor activity could be enhanced by conjugating SG3584 to trastuzumab at higher DARs of 4 and 8 and by adjusting dosing and schedule. Higher-DAR conjugates were stable and displayed good rat pharmacokinetic profiles as measured by ELISA and LC/MS-MS. A single intravenous dose of isotype control SG3584 DAR 2 ADC resulted in no mortality in rats or monkeys at doses of up to 25 and 30 mg/kg, respectively. These findings suggest that further investigations of low-potency PBD dimers in ADCs that target hematologic and solid tumors are warranted.
Assuntos
Antineoplásicos , Imunoconjugados , Animais , Antineoplásicos/farmacologia , Benzodiazepinas/farmacologia , Linhagem Celular Tumoral , Humanos , Imunoconjugados/uso terapêutico , Pirróis , Ratos , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Delivering peptides into cells could open up possibilities for targeting intracellular proteins. Although fatty acylation of peptide therapeutics improves their systemic half-life, it remains unclear how it influences their cellular uptake. Here, we demonstrate that a fatty acylated peptide exhibits enhanced cellular internalization and cytosolic distribution compared to the un-acylated version. By using a cystine-knot peptide as a model system, we report an efficient strategy for site-specific conjugation of fatty acids. Peptides modified with fatty acids of different chain lengths entered cells through clathrin-mediated and macropinocytosis pathways. The cellular uptake was mediated by the length of the hydrocarbon chain, with myristic acid conjugates displaying the highest distribution across the cytoplasm including the cytosol, and endomembranes of the ER, Golgi and mitochondria. Our studies demonstrate how fatty acylation improves the cellular uptake of peptides, and lay the groundwork for future development of bioactive peptides with enhanced intracellular distribution.
RESUMO
Absorptive- and receptor-mediated transcytosis (AMT/RMT) are widely studied strategies to deliver therapeutics across the blood-brain barrier (BBB). However, an improved understanding of the mechanism surrounding trafficking is required that could promote delivery. Accordingly, we designed a flexible platform that merged AMT and RMT motifs on a single scaffold to probe various parameters (ligand, affinity, valency, position) in a screening campaign. During this process we adapted an in vitro BBB model to reliably rank transcytosis of the vehicle library. Our results demonstrate heightened uptake and trafficking for the shuttles, with a structure-activity relationship for transcytosis emerging. Notably, due to their small size, the majority of shuttles demonstrated increased permeation compared to transferrin, with the highest performing shuttle affording a 4.9-fold increase. Consequently, we have identified novel peptide conjugates that have the capacity to act as promising brain shuttles.
RESUMO
A novel Al18F labelled peptide tracer for PET imaging of oxytocin receptor has been accessed through a high radiochemical yield approach. This tracer showed comparable affinity and higher selectivity and stability compared to oxytocin, and was used to demonstrate direct nose-to-brain uptake following intranasal administration, a common yet controversial delivery route for oxytocin-based therapeutics.