Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Antimicrob Agents Chemother ; 67(5): e0008123, 2023 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-37097144

RESUMO

New antifungal therapies are needed for both systemic, invasive infections in addition to superficial infections of mucosal and skin surfaces as well as biofilms associated with medical devices. The resistance of biofilm and biofilm-like growth phases of fungi contributes to the poor efficacy of systemic therapies to nonsystemic infections. Here, we describe the identification and characterization of a novel keto-alkyl-pyridinium scaffold with broad spectrum activity (2 to 16 µg/mL) against medically important yeasts and molds, including clinical isolates resistant to azoles and/or echinocandins. Furthermore, these keto-alkyl-pyridinium agents retain substantial activity against biofilm phase yeast and have direct activity against hyphal A. fumigatus. Although their toxicity precludes use in systemic infections, we found that the keto-alkyl-pyridinium molecules reduce Candida albicans fungal burden in a rat model of vascular catheter infection and reduce Candida auris colonization in a porcine ex vivo model. These initial preclinical data suggest that molecules of this class may warrant further study and development for nonsystemic applications.


Assuntos
Candidíase , Dispositivos de Acesso Vascular , Ratos , Animais , Suínos , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Candida albicans , Candida , Candida auris , Candidíase/tratamento farmacológico , Candidíase/microbiologia , Biofilmes , Testes de Sensibilidade Microbiana
2.
Antimicrob Agents Chemother ; 67(10): e0056723, 2023 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-37702508

RESUMO

Multidrug resistance (MDR) transporters such as ATP-Binding Cassette (ABC) and Major Facilitator Superfamily proteins are important mediators of antifungal drug resistance, particularly with respect to azole class drugs. Consequently, identifying molecules that are not susceptible to this mechanism of resistance is an important goal for new antifungal drug discovery. As part of a project to optimize the antifungal activity of clinically used phenothiazines, we synthesized a fluphenazine derivative (CWHM-974) with 8-fold higher activity against Candida spp. compared to the fluphenazine and with activity against Candida spp. with reduced fluconazole susceptibility due to increased MDR transporters. Here, we show that the improved C. albicans activity is because fluphenazine induces its own resistance by triggering expression of Candida drug resistance (CDR) transporters while CWHM-974 induces expression but does not appear to be a substrate for the transporters or is insensitive to their effects through other mechanisms. We also found that fluphenazine and CWHM-974 are antagonistic with fluconazole in C. albicans but not in C. glabrata, despite inducing CDR1 expression to high levels. Overall, CWHM-974 is one of the few examples of a molecule in which relatively small structural modifications significantly reduced susceptibility to multidrug transporter-mediated resistance.


Assuntos
Antifúngicos , Candida albicans , Antifúngicos/farmacologia , Antifúngicos/metabolismo , Fluconazol/farmacologia , Fluconazol/metabolismo , Flufenazina/farmacologia , Flufenazina/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Testes de Sensibilidade Microbiana , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Resistência a Múltiplos Medicamentos , Candida , Farmacorresistência Fúngica/genética
3.
PLoS Pathog ; 13(4): e1006340, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28423062

RESUMO

Aspergillus fumigatus is responsible for a disproportionate number of invasive mycosis cases relative to other common filamentous fungi. While many fungal factors critical for infection establishment are known, genes essential for disease persistence and progression are ill defined. We propose that fungal factors that promote navigation of the rapidly changing nutrient and structural landscape characteristic of disease progression represent untapped clinically relevant therapeutic targets. To this end, we find that A. fumigatus requires a carbon catabolite repression (CCR) mediated genetic network to support in vivo fungal fitness and disease progression. While CCR as mediated by the transcriptional repressor CreA is not required for pulmonary infection establishment, loss of CCR inhibits fungal metabolic plasticity and the ability to thrive in the dynamic infection microenvironment. Our results suggest a model whereby CCR in an environmental filamentous fungus is dispensable for initiation of pulmonary infection but essential for infection maintenance and disease progression. Conceptually, we argue these data provide a foundation for additional studies on fungal factors required to support fungal fitness and disease progression and term such genes and factors, DPFs (disease progression factors).


Assuntos
Aspergilose/microbiologia , Aspergillus fumigatus/genética , Carbono/metabolismo , Repressão Catabólica , Proteínas Fúngicas/metabolismo , Redes Reguladoras de Genes , Aspergilose/patologia , Aspergillus fumigatus/fisiologia , Progressão da Doença , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Modelos Biológicos , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Estresse Fisiológico
4.
EMBO J ; 33(19): 2261-76, 2014 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-25092765

RESUMO

Balance of physiological levels of iron is essential for every organism. In Aspergillus fumigatus and other fungal pathogens, the transcription factor HapX mediates adaptation to iron limitation and consequently virulence by repressing iron consumption and activating iron uptake. Here, we demonstrate that HapX is also essential for iron resistance via activating vacuolar iron storage. We identified HapX protein domains that are essential for HapX functions during either iron starvation or high-iron conditions. The evolutionary conservation of these domains indicates their wide-spread role in iron sensing. We further demonstrate that a HapX homodimer and the CCAAT-binding complex (CBC) cooperatively bind an evolutionary conserved DNA motif in a target promoter. The latter reveals the mode of discrimination between general CBC and specific HapX/CBC target genes. Collectively, our study uncovers a novel regulatory mechanism mediating both iron resistance and adaptation to iron starvation by the same transcription factor complex with activating and repressing functions depending on ambient iron availability.


Assuntos
Adaptação Fisiológica , Aspergilose/metabolismo , Aspergillus fumigatus/patogenicidade , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Ferro/metabolismo , Fatores de Transcrição/metabolismo , Aspergilose/genética , Aspergilose/virologia , Western Blotting , Imunoprecipitação da Cromatina , Proteínas Fúngicas/genética , Homeostase , Imunoprecipitação , Inanição , Ressonância de Plasmônio de Superfície , Fatores de Transcrição/genética , Vacúolos/metabolismo , Virulência
5.
Infect Immun ; 85(12)2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28947643

RESUMO

Heterogeneity among Aspergillus fumigatus isolates results in unique virulence potential and inflammatory responses. How these isolates drive specific immune responses and how this affects fungally induced lung damage and disease outcome are unresolved. We demonstrate that the highly virulent CEA10 strain is able to rapidly germinate within the immunocompetent lung environment, inducing greater lung damage, vascular leakage, and interleukin 1α (IL-1α) release than the low-virulence Af293 strain, which germinates with a lower frequency in this environment. Importantly, the clearance of CEA10 was consequently dependent on IL-1α, in contrast to Af293. The release of IL-1α occurred by a caspase 1/11- and P2XR7-independent mechanism but was dependent on calpain activity. Our finding that early fungal conidium germination drives greater lung damage and IL-1α-dependent inflammation is supported by three independent experimental lines. First, pregermination of Af293 prior to in vivo challenge drives greater lung damage and an IL-1α-dependent neutrophil response. Second, the more virulent EVOL20 strain, derived from Af293, is able to germinate in the airways, leading to enhanced lung damage and IL-1α-dependent inflammation and fungal clearance. Third, primary environmental A. fumigatus isolates that rapidly germinate under airway conditions follow the same trend toward IL-1α dependency. Our data support the hypothesis that A. fumigatus phenotypic variation significantly contributes to disease outcomes.


Assuntos
Aspergilose/imunologia , Aspergillus fumigatus/imunologia , Aspergillus fumigatus/patogenicidade , Interleucina-1alfa/imunologia , Pulmão/imunologia , Animais , Células Cultivadas , Imunocompetência , Inflamação , Pulmão/microbiologia , Macrófagos/imunologia , Macrófagos/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fenótipo , Esporos Fúngicos/imunologia , Esporos Fúngicos/patogenicidade , Virulência
6.
Microbiol Spectr ; : e0104524, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38916314

RESUMO

Fungal infections are a major contributor to morbidity and mortality among immunocompromised populations. Moreover, fungal disease caused by molds are difficult to treat and are associated with particularly high mortality. To address the need for new mold-active antifungal drugs, we performed a high-throughput screen with Aspergillus fumigatus, the most common pathogenic mold. We identified a novel, pyrimidine-based chemical scaffold with broad-spectrum antifungal activity including activity against several difficult-to-treat molds. A chemical genetics screen of Saccharomyces cerevisiae suggested that this compound may target the endoplasmic reticulum (ER) and perturb ER function and/or homeostasis. Consistent with this model, this compound induces the unfolded protein response and inhibits secretion of A. fumigatus collagenases. Initial cytotoxicity and pharmacokinetic studies show favorable features including limited mammalian cell toxicity and bioavailability in vivo. Together, these data support the further medicinal chemistry and pre-clinical development of this pyrimidine scaffold toward more effective treatments for life-threatening invasive mold infections.IMPORTANCEInvasive fungal diseases are life-threatening infections caused by fungi in immunocompromised individuals. Currently, there are only three major classes of antifungal drugs available to treat fungal infections; however, these options are becoming even more limited with the global emergence of antifungal drug resistance. To address the need for new antifungal therapies, we performed a screen of chemical compounds and identified a novel molecule with antifungal activity. Initial characterization of this compound shows drug-like features and broad-spectrum activity against medically important fungi. Together, our results support the continued development of this compound as a potential future therapy for these devastating fungal infections.

7.
Methods Mol Biol ; 2658: 35-42, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37024693

RESUMO

Human fungal infections caused by molds have been on the rise in recent years. These infections have high mortality rates compared to other fungal infections, and yet treatment options are limited due to resistance to clinical antifungals and lack of broad-spectrum activity against molds. Technical challenges associated with molds have limited large-throughput screening efforts for anti-mold compounds: therefore, we adapted an assay for use with A. fumigatus to help fill the gap in robust screening platforms for these organisms. This assay measures the release of the cytosolic enzyme adenylate kinase (AK) as a measure of fungal cell lysis and can also detect inhibition of germination as a reduction in the secretion of AK during vegetative growth. The ability to detect both lysis and inhibition of germination facilitates the identification of a wide range of compounds with different mechanisms of action, creating a strong screening platform for the identification of novel, anti-mold compounds.


Assuntos
Aspergillus fumigatus , Ensaios de Triagem em Larga Escala , Humanos , Testes de Sensibilidade Microbiana , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico
8.
mSphere ; 8(6): e0046823, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38010145

RESUMO

IMPORTANCE: Molds are environmental fungi that can cause disease in immunocompromised individuals. The most common pathogenic mold is Aspergillus fumigatus, which is typically inhaled into the lungs and causes invasive pulmonary disease. In a subset of these patients, this infection can spread from the lungs to other organs including the brain, resulting in cerebral aspergillosis. How A. fumigatus causes brain disease is not well understood and these infections are associated with extremely high mortality rates. Thus, we developed an animal model to study the pathogenesis of cerebral aspergillosis to better understand this disease and develop better treatments for these life-threatening infections.


Assuntos
Aspergilose , Aspergillus fumigatus , Humanos , Animais , Camundongos , Modelos Animais de Doenças , Aspergilose/microbiologia , Pulmão/microbiologia
9.
bioRxiv ; 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36711909

RESUMO

New antifungal therapies are needed for both systemic, invasive infections as well as superficial infections of mucosal and skin surfaces as well as biofilms associated with medical devices. The resistance of biofilm and biofilm-like growth phases of fungi contributes to the poor efficacy of systemic therapies to non-systemic infections. Here, we describe the identification and characterization of a novel keto-alkyl-pyridinium scaffold with broad spectrum activity (2-16 µg/mL) against medically important yeasts and moulds, including clinical isolates resistant to azoles and/or echinocandins. Furthermore, these keto-alkyl-pyridinium agents retain substantial activity against biofilm phase yeast and have direct activity against hyphal A. fumigatus . Although their toxicity precludes use in systemic infections, we found that the keto-alkyl-pyridinium molecules reduce C. albicans fungal burden in a rat model of vascular catheter infection and reduce Candida auris colonization in a porcine ex vivo model. These initial pre-clinical data suggest that molecules of this class may warrant further study and development.

10.
bioRxiv ; 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-37205554

RESUMO

Multidrug resistance (MDR) transporters such as ATP Binding Cassette (ABC) and Major Facilitator Superfamily (MFS) proteins are important mediators of antifungal drug resistance, particularly with respect to azole class drugs. Consequently, identifying molecules that are not susceptible to this mechanism of resistance is an important goal for new antifungal drug discovery. As part of a project to optimize the antifungal activity of clinically used phenothiazines, we synthesized a fluphenazine derivative (CWHM-974) with 8-fold higher activity against Candida spp. compared to the fluphenazine and with activity against Candida spp. with reduced fluconazole susceptibility due to increased multidrug resistance transporters. Here, we show that the improved C. albicans activity is because fluphenazine induces its own resistance by triggering expression of CDR transporters while CWHM-974 induces expression but does not appear to be a substrate for the transporters or is insensitive to their effects through other mechanisms. We also found that fluphenazine and CWHM-974 are antagonistic with fluconazole in C. albicans but not in C. glabrata , despite inducing CDR1 expression to high levels. Overall, CWHM-974 represents a unique example of a medicinal chemistry-based conversion of chemical scaffold from MDR-sensitive to MDR-resistant and, hence, active against fungi that have developed resistance to clinically used antifungals such as the azoles.

11.
Front Oncol ; 13: 1295185, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37909019

RESUMO

Introduction: An attractive, yet unrealized, goal in cancer therapy is repurposing psychiatric drugs that can readily penetrate the blood-brain barrier for the treatment of primary brain tumors and brain metastases. Phenothiazines (PTZs) have demonstrated anti-cancer properties through a variety of mechanisms. However, it remains unclear whether these effects are entirely separate from their activity as dopamine and serotonin receptor (DR/5-HTR) antagonists. Methods: In this study, we evaluated the anti-cancer efficacy of a novel PTZ analog, CWHM-974, that was shown to be 100-1000-fold less potent against DR/5-HTR than its analog fluphenazine (FLU). Results: CWHM-974 was more potent than FLU against a panel of cancer cell lines, thus clearly demonstrating that its anti-cancer effects were independent of DR/5-HTR signaling. Our results further suggested that calmodulin (CaM) binding may be necessary, but not sufficient, to explain the anti-cancer effects of CWHM-974. While both FLU and CWHM-974 induced apoptosis, they induced distinct effects on the cell cycle (G0/G1 and mitotic arrest respectively) suggesting that they may have differential effects on CaM-binding proteins involved in cell cycle regulation. Discussion: Altogether, our findings indicated that the anti-cancer efficacy of the CWHM-974 is separable from DR/5-HTR antagonism. Thus, reducing the toxicity associated with phenothiazines related to DR/5-HTR antagonism may improve the potential to repurpose this class of drugs to treat brain tumors and/or brain metastasis.

12.
mSphere ; 7(3): e0016322, 2022 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-35506343

RESUMO

There is an urgent need for new antifungals to treat cryptococcal meningoencephalitis, a leading cause of mortality in people living with HIV/AIDS. An important aspect of antifungal drug development is the validation of targets to determine whether they are required for the survival of the organism in animal models of disease. In Cryptococcus neoformans, a copper-regulated promoter (pCTR4-2) has been used previously to modulate gene expression in vivo. The premise for these experiments is that copper concentrations differ depending on the host niche. Here, we directly test this premise and confirm that the expression of CTR4, the promoter used to regulate gene expression, is much lower in the mouse lung compared to the brain. To further explore this approach, we applied it to the gene encoding 1,3-ß-glucan synthase, FKS1. In vitro, reduced expression of FKS1 has little effect on growth but does activate the cell wall integrity stress response and increase susceptibility to caspofungin, a direct inhibitor of Fks1. These data suggest that compensatory pathways that reduce C. neoformans resistance do so through posttranscriptional effects. In vivo, however, a less pronounced reduction in FKS1 expression leads to a much more significant reduction in lung fungal burden (~1 log10 CFU), indicating that the compensatory responses to a reduction in FKS1 expression are not as effective in vivo as they are in vitro. In summary, use of copper-regulated expression of putative drug targets in vitro and in vivo can provide insights into the biological consequences of reduced activity of the target during infection. IMPORTANCE Conditional expression systems are widely used to genetically validate antifungal drug targets in mouse models of infection. Copper-regulated expression using the promoter of the CTR4 gene has been sporadically used for this purpose in C. neoformans. Here, we show that CTR4 expression is low in the lung and high in the brain, establishing the basic premise behind this approach. We applied the approach to the study of FKS1, the gene encoding the target of the echinocandin class of 1,3-ß-glucan synthase inhibitors. Our in vitro and in vivo studies indicate that C. neoformans tolerates extremely low levels of FKS1 expression. This observation provides a potential explanation for the poor activity of 1,3-ß-glucan synthase inhibitors toward C. neoformans.


Assuntos
Criptococose , Cryptococcus neoformans , Animais , Antifúngicos/metabolismo , Cobre/metabolismo , Criptococose/tratamento farmacológico , Criptococose/microbiologia , Modelos Animais de Doenças , Proteínas Fúngicas/metabolismo , Expressão Gênica , Humanos , Camundongos
13.
mBio ; 13(4): e0127922, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-35766403

RESUMO

Cryptococcus neoformans is an important human fungal pathogen for which the external environment is its primary niche. Previous work has shown that two nonessential acetyl-CoA metabolism enzymes, ATP-citrate lyase (ACL1) and acetyl-CoA synthetase (ACS1), play important roles in C. neoformans infection. Here, we took a genetic interaction approach to studying the interplay between these two enzymes along with an enzyme initially called ACS2 but which we have found is an acetoacetyl-CoA synthetase; we have renamed the gene 2-ketobutyryl CoA synthetase 1 (KBC1) based on its biochemical activity and the systematic name of its substrate. ACL1 and ACS1 represent a synthetic lethal pair of genes based on our genetic interaction studies. Double mutants of KBC1 with either ACS1 or ACL1 do not have significant synthetic phenotypes in vitro, although we find that deletion of any one of these enzymes reduces fitness within macrophages. Importantly, the acs1Δ kbc1Δ double mutant has significantly reduced fitness in the CNS relative to either single mutant as well as WT (~2 log10 CFU reduction in fungal burden), indicating the important role these enzymes play during infection. The expression of both ACS1 and KBC1 is increased in vivo relative to in vitro conditions. The acs1Δ mutant is hypersusceptible to fluconazole in vivo despite its minimal in vitro phenotypes. These data not only provide insights into the in vivo mechanism of action for a new class of antifungal Acs inhibitors but also into metabolic adaptations of C. neoformans to the host environment. IMPORTANCE The adaptation of environmental fungal pathogens to the mammalian host is critical to pathogenesis. Of these adaptations, the remodeling of carbon metabolism is particularly important. Here, we generated a focused set of double mutants of nonessential genes (ACL1, ACS1, KBC1) involved in acetyl-CoA metabolism and examined their fitness in vitro and during CNS infection. From these studies, we found that all three enzymes play important roles during infection but that the role of ACS1/KBC1 was minimal in vitro. Consistent with these observations, the expression of ACS1 and KBC1 was increased in vivo relative to standard in vitro conditions. Furthermore, strains lacking both ACL1 and ACS1 were not viable. These data clearly show that C. neoformans employs multiple carbon metabolism pathways to adapt to the host environment. They also provide insights into the potential mechanism of action for anti-cryptococcal Acs inhibitors.


Assuntos
Criptococose , Cryptococcus neoformans , Acetilcoenzima A/metabolismo , Animais , Carbono/metabolismo , Criptococose/microbiologia , Cryptococcus neoformans/genética , Cryptococcus neoformans/metabolismo , Humanos , Mamíferos/metabolismo , Fenótipo
14.
Microbiol Spectr ; 10(2): e0030122, 2022 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-35412378

RESUMO

Cryptococcus neoformans is an environmental yeast and an opportunistic human pathogen. The ability to cause disease depends on the ability to adapt to the human host. Previous studies implicated infectivity-related kinase 3 (IRK3, CNAG_03048) as required for establishing an infection. We genetically and biochemically characterized IRK3 as a gluconate kinase and propose the name GNK1. This metabolic enzyme utilizes gluconate to produce 6-phosphogluconate as part of the alternative oxidative phase of the pentose phosphate pathway (AOXPPP). The presence of GNK1 confirms that the AOXPPP is present and able to compensate for loss of the traditional OXPPP, providing an explanation for its nonessentiality. C. neoformans can utilize gluconate as an alternative carbon source in a GNK1-dependent manner. In our efforts to understand the role of GNK1 in host adaptation and virulence, we found that GNK1-deficient mutants have variable virulence and carbon dioxide tolerance across multiple strains, suggesting that second site mutations frequently interact with GNK1 deletion mutations. In our effort to isolate these genetic loci by backcrossing experiments, we discovered that GNK1-deficient strains are unable to sporulate. These data suggest that gluconate metabolism is critical for sporulation of C. neoformans. IMPORTANCE Cryptococcus neoformans is a fungal pathogen that contributes to nearly 180,000 deaths annually. We characterized a gene named GNK1 that appears to interact with other genetic loci involved with the ability of C. neoformans to act as a pathogen. While these interacting genetic loci remain elusive, we discovered that GNK1 plays roles in both metabolism and mating/sporulation. Further interrogation of the mechanistic role for GNK1 in sexual reproduction may uncover a larger network of genes that are important for host adaptation and virulence.


Assuntos
Criptococose , Cryptococcus neoformans , Cryptococcus neoformans/genética , Gluconatos , Humanos , Fosfotransferases (Aceptor do Grupo Álcool)
15.
Genetics ; 220(1)2022 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-34849848

RESUMO

The opportunistic human fungal pathogen Cryptococcus neoformans has tremendous impact on global health, causing 181,000 deaths annually. Current treatment options are limited, and the frequent development of drug resistance exacerbates the challenge of managing invasive cryptococcal infections. In diverse fungal pathogens, the essential molecular chaperone Hsp90 governs fungal survival, drug resistance, and virulence. Therefore, targeting this chaperone has emerged as a promising approach to combat fungal infections. However, the role of Hsp90 in supporting C. neoformans pathogenesis remains largely elusive due to a lack of genetic characterization. To help dissect the functions of Hsp90 in C. neoformans, we generated a conditional expression strain in which HSP90 is under control of the copper-repressible promoter CTR4-2. Addition of copper to culture medium depleted Hsp90 transcript and protein levels in this strain, resulting in compromised fungal growth at host temperature; increased sensitivity to stressors, including the azole class of antifungals; altered C. neoformans morphology; and impaired melanin production. Finally, leveraging the fact that copper concentrations vary widely in different mouse tissues, we demonstrated attenuated virulence for the CTR4-2p-HSP90 mutant specifically in an inhalation model of Cryptococcus infection. During invasion and establishment of infection in this mouse model, the pathogen is exposed to the relatively high copper concentrations found in the lung as compared to blood. Overall, this work generates a tractable genetic system to study the role of Hsp90 in supporting the pathogenicity of C. neoformans and provides proof-of-principle that targeting Hsp90 holds great promise as a strategy to control cryptococcal infection.


Assuntos
Cryptococcus neoformans
16.
mBio ; 13(2): e0293321, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35254131

RESUMO

Alanine metabolism has been suggested as an adaptation strategy to oxygen limitation in organisms ranging from plants to mammals. Within the pulmonary infection microenvironment, Aspergillus fumigatus forms biofilms with steep oxygen gradients defined by regions of oxygen limitation. An alanine aminotransferase, AlaA, was observed to function in alanine catabolism and is required for several aspects of A. fumigatus biofilm physiology. Loss of alaA, or its catalytic activity, results in decreased adherence of biofilms through a defect in the maturation of the extracellular matrix polysaccharide galactosaminogalactan (GAG). Additionally, exposure of cell wall polysaccharides is also impacted by loss of alaA, and loss of AlaA catalytic activity confers increased biofilm susceptibility to echinocandin treatment, which is correlated with enhanced fungicidal activity. The increase in echinocandin susceptibility is specific to biofilms, and chemical inhibition of alaA by the alanine aminotransferase inhibitor ß-chloro-l-alanine is sufficient to sensitize A. fumigatus biofilms to echinocandin treatment. Finally, loss of alaA increases susceptibility of A. fumigatus to in vivo echinocandin treatment in a murine model of invasive pulmonary aspergillosis. Our results provide insight into the interplay of metabolism, biofilm formation, and antifungal drug resistance in A. fumigatus and describe a mechanism of increasing susceptibility of A. fumigatus biofilms to the echinocandin class of antifungal drugs. IMPORTANCE Aspergillus fumigatus is a ubiquitous filamentous fungus that causes an array of diseases depending on the immune status of an individual, collectively termed aspergillosis. Antifungal therapy for invasive pulmonary aspergillosis (IPA) or chronic pulmonary aspergillosis (CPA) is limited and too often ineffective. This is in part due to A. fumigatus biofilm formation within the infection environment and the resulting emergent properties, particularly increased antifungal resistance. Thus, insights into biofilm formation and mechanisms driving increased antifungal drug resistance are critical for improving existing therapeutic strategies and development of novel antifungals. In this work, we describe an unexpected observation where alanine metabolism, via the alanine aminotransferase AlaA, is required for several aspects of A. fumigatus biofilm physiology, including resistance of A. fumigatus biofilms to the echinocandin class of antifungal drugs. Importantly, we observed that chemical inhibition of alanine aminotransferases is sufficient to increase echinocandin susceptibility and that loss of alaA increases susceptibility to echinocandin treatment in a murine model of IPA. AlaA is the first gene discovered in A. fumigatus that confers resistance to an antifungal drug specifically in a biofilm context.


Assuntos
Aspergillus fumigatus , Aspergilose Pulmonar Invasiva , Alanina/metabolismo , Alanina/farmacologia , Alanina/uso terapêutico , Alanina Transaminase/metabolismo , Alanina Transaminase/farmacologia , Animais , Antifúngicos/metabolismo , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Biofilmes , Modelos Animais de Doenças , Equinocandinas/metabolismo , Equinocandinas/farmacologia , Equinocandinas/uso terapêutico , Mamíferos , Camundongos , Oxigênio/metabolismo
17.
mSphere ; 6(4): e0053921, 2021 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-34406854

RESUMO

Treatment of invasive mold infections is limited by the lack of adequate drug options that are effective against these fatal infections. High-throughput screening of molds using traditional antifungal assays of growth is problematic and has greatly limited our ability to identify new mold-active agents. Here, we present a high-throughput screening platform for use with Aspergillus fumigatus, the most common causative agent of invasive mold infections, for the discovery of novel mold-active antifungals. This assay detects cell lysis through the release of the cytosolic enzyme adenylate kinase and, thus, is not dependent on changes in biomass or metabolism to detect antifungal activity. The ability to specifically detect cell lysis is a unique aspect of this assay that allows identification of molecules that disrupt fungal cell integrity, such as cell wall-active molecules. We also found that germinating A. fumigatus conidia release low levels of adenylate kinase and that a reduction in this background allowed us to identify molecules that inhibit conidial germination, expanding the potential for discovery of novel antifungal compounds. Here, we describe the validation of this assay and proof-of-concept pilot screens that identified a novel antifungal compound, PIK-75, that disrupts cell wall integrity. This screening assay provides a novel platform for high-throughput screens with A. fumigatus for the identification of anti-mold drugs. IMPORTANCE Fungal infections caused by molds have the highest mortality rates of human fungal infections. These devastating infections are hard to treat and available antifungal drugs are often not effective. Therefore, the identification of new antifungal drugs with mold activity is critical. Drug screening with molds is challenging and there are limited assays available to identify new antifungal compounds directly with these organisms. Here, we present an assay suitable for use for high-throughput screening with a common mold pathogen. This assay has exciting future potential for the identification of new drugs to treat these fatal infections.


Assuntos
Antifúngicos/farmacologia , Aspergillus fumigatus/efeitos dos fármacos , Ensaios de Triagem em Larga Escala/métodos , Adenilato Quinase/antagonistas & inibidores , Aspergilose/tratamento farmacológico , Aspergillus fumigatus/enzimologia , Aspergillus fumigatus/crescimento & desenvolvimento , Parede Celular/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos/métodos , Humanos , Estudo de Prova de Conceito , Bibliotecas de Moléculas Pequenas/farmacologia , Esporos Fúngicos/efeitos dos fármacos , Esporos Fúngicos/enzimologia
18.
Curr Opin Microbiol ; 57: 1-6, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32339892

RESUMO

Invasive fungal infections are responsible for a significant disease burden worldwide. Drugs to treat these infections are limited to only four unique classes, and despite these available treatments, mortality rates remain unacceptably high. In this review, we will discuss antifungal drug screening and how the approach to identifying novel compounds needs move away from traditional growth-based assays in order to meet the demand for new drugs. We highlight specific examples of creative screening strategies that increase the likelihood of identifying compounds with desired activities and provide perspective to inspire development of novel screens for the identification of first-in-class antifungals.


Assuntos
Antifúngicos/farmacologia , Avaliação Pré-Clínica de Medicamentos/métodos , Fungos/efeitos dos fármacos , Micoses/microbiologia , Animais , Farmacorresistência Fúngica , Fungos/genética , Fungos/fisiologia , Humanos
19.
Org Lett ; 22(19): 7743-7746, 2020 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-32969231

RESUMO

A synthesis of the reported antifungal agent (+)-hippolide J is presented. The rapid assembly of the natural product was enabled through implementation of an enantioselective isomerization/[2 + 2]-cycloaddition sequence. Due to the simplicity of the route, >100 mg of the natural product were prepared in a single pass. Anitfungal assays of hippolide J, however, confirmed that it showed no activity against several fungal strains, contrary to the isolation report.


Assuntos
Antifúngicos/farmacologia , Antifúngicos/química , Produtos Biológicos , Reação de Cicloadição , Estrutura Molecular , Estereoisomerismo
20.
ACS Infect Dis ; 6(3): 529-539, 2020 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-32070095

RESUMO

Cryptococcus neoformans is one of the most important human fungal pathogens and causes life-threatening meningoencephalitis in immunocompromised patients. The current gold standard therapy for C. neoformans meningoencephalitis is based on medications that are over 50 years old and is not readily available in regions with high disease burden. Here, we report the mycologic, mechanistic, and pharmacologic characterization of a set of benzothioureas with highly selective fungicidal activity against C. neoformans. In addition, to direct antifungal activity, benzothioureas inhibit C. neoformans virulence traits. On the basis of a set of phenotypic, biochemical, and biophysical assays, the benzothioureas (BTUs) inhibit the late secretory pathway (post-Golgi), possibly through a direct interaction with Sav1, an orthologue of the Sec4-class small GTPase. Importantly, pharmacological characterization of the BTUs indicates it readily penetrates the blood-brain barrier. Together, our data support the further development of this scaffold as an antifungal agent with a novel mechanism of action against C. neoformans.


Assuntos
Antifúngicos/farmacocinética , Benzeno/química , Cryptococcus neoformans/efeitos dos fármacos , Via Secretória/efeitos dos fármacos , Tioureia/química , Tioureia/farmacocinética , Animais , Benzeno/farmacologia , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Encéfalo/efeitos dos fármacos , Encéfalo/microbiologia , Cryptococcus neoformans/metabolismo , Feminino , Humanos , Camundongos , Testes de Sensibilidade Microbiana , Virulência/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA