Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Small ; 18(36): e2202303, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35770803

RESUMO

Non-viral vectors represent versatile and immunologically safer alternatives for nucleic acid delivery. Nanoneedles and high-aspect ratio nanostructures are unconventional but interesting delivery systems, in which delivery is mediated by surface interactions. Herein, nanoneedles are synergistically combined with polysaccharide-polyplex nanofilms and enhanced transfection efficiency is observed, compared to polyplexes in suspension. Different polyplex-polyelectrolyte nanofilm combinations are assessed and it is found that transfection efficiency is enhanced when using polysaccharide-based polyanions, rather than being only specific for hyaluronic acid, as suggested in earlier studies. Moreover, results show that enhanced transfection is not mediated by interactions with the CD44 receptor, previously hypothesized as a major mechanism mediating enhancement via hyaluronate. In cardiac tissue, nanoneedles are shown to increase the transfection efficiency of nanofilms compared to flat substrates; while in vitro, high transfection efficiencies are observed in nanostructures where cells present large interfacing areas with the substrate. The results of this study demonstrate that surface-mediated transfection using this system is efficient and safe, requiring amounts of nucleic acid with an order of magnitude lower than standard culture transfection. These findings expand the spectrum of possible polyelectrolyte combinations that can be used for the development of suitable non-viral vectors for exploration in further clinical trials.


Assuntos
Técnicas de Transferência de Genes , Ácidos Nucleicos , Terapia Genética/métodos , Polieletrólitos , Transfecção
2.
J Mater Chem B ; 9(24): 4906-4914, 2021 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-34100486

RESUMO

We investigated the biomaterial interface between the bacteria Escherichia coli DH5α and silicon nanowire patterned surfaces. We optimised the engineering of silicon nanowire coated surfaces using metal-assisted chemical etching. Using a combination of focussed ion beam scanning electron microscopy, and cell viability and transformation assays, we found that with increasing interfacing force, cell viability decreases, as a result of increasing cell rupture. However, despite this aggressive interfacing regime, a proportion of the bacterial cell population remains viable. We found that the silicon nanowires neither resulted in complete loss of cell viability nor partial membrane disruption and corresponding DNA plasmid transformation. Critically, assay choice was observed to be important, as a reduction-based metabolic reagent was found to yield false-positive results on the silicon nanowire substrate. We discuss the implications of these results for the future design and assessment of bacteria-nanostructure interfacing experiments.


Assuntos
Escherichia coli/efeitos dos fármacos , Escherichia coli/fisiologia , Viabilidade Microbiana/efeitos dos fármacos , Nanofios , Silício/química , Silício/farmacologia , Biotransformação/efeitos dos fármacos , Escherichia coli/metabolismo , Propriedades de Superfície
3.
Biofabrication ; 13(2): 025004, 2021 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-33710972

RESUMO

Traditional in vitro bioengineering approaches whereby only individual biophysical cues are manipulated at any one time are highly inefficient, falling short when recapitulating the complexity of the cardiac environment. Multiple biophysical cues are present in the native myocardial niche and are essential during development, as well as in maintenance of adult cardiomyocyte (CM) phenotype in both health and disease. This study establishes a novel biofabrication workflow to study and manipulate hiPSC-CMs and to understand how these cells respond to a multiplexed biophysical environment, namely 3D shape and substrate stiffness, at a single cell level. Silicon masters were fabricated and developed to generate inverse patterns of the desired 3D shapes in bas relief, which then were used to mold the designed microwell arrays into a hydrogel. Polyacrylamide (PAAm) was modified with the incorporation of acrylic acid to provide a carboxylic group conjugation site for adhesion motifs, without compromising capacity to modulate stiffness. In this manner, two individual parameters can be finely tuned independently within the hydrogel: the shape of the 3D microwell and its stiffness. The design allows the platform to isolate single hiPSC-CMs to study solely biophysical cues in the absence of cell-cell physical interaction. Under physiologic-like physical conditions (3D shape resembling that of adult CM and 9.83 kPa substrate stiffness that mimics muscle stiffness), isolated single hiPSC-CMs exhibit increased Cx-43 density, cell membrane stiffness and calcium transient amplitude; co-expression of the subpopulation-related MYL2-MYL7 proteins; and higher anisotropism than cells in pathologic-like conditions (flat surface and 112 kPa substrate stiffness). This demonstrates that supplying a physiologic or pathologic microenvironment to an isolated single hiPSC-CM in the absence of any physical cell-to-cell communication in this biofabricated platform leads to a significantly different set of cellular features, thus presenting a differential phenotype. Importantly, this demonstrates the high plasticity of hiPSC-CMs even in isolation. The ability of multiple biophysical cues to significantly influence isolated single hiPSC-CM phenotype and functionality highlights the importance of fine-tuning such cues for specific applications. This has the potential to produce more fit-for-purpose hiPSC-CMs. Further understanding of human cardiac development is enabled by the robust, versatile and reproducible biofabrication techniques applied here. We envision that this system could be easily applied to other tissues and cell types where the influence of cellular shape and stiffness of the surrounding environment is hypothesized to play an important role in physiology.


Assuntos
Células-Tronco Pluripotentes Induzidas , Diferenciação Celular , Humanos , Miócitos Cardíacos , Fenótipo , Estimulação Física
4.
Elife ; 102021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-33821795

RESUMO

Colistin is an antibiotic of last resort, but has poor efficacy and resistance is a growing problem. Whilst it is well established that colistin disrupts the bacterial outer membrane (OM) by selectively targeting lipopolysaccharide (LPS), it was unclear how this led to bacterial killing. We discovered that MCR-1 mediated colistin resistance in Escherichia coli is due to modified LPS at the cytoplasmic rather than OM. In doing so, we also demonstrated that colistin exerts bactericidal activity by targeting LPS in the cytoplasmic membrane (CM). We then exploited this information to devise a new therapeutic approach. Using the LPS transport inhibitor murepavadin, we were able to cause LPS accumulation in the CM of Pseudomonas aeruginosa, which resulted in increased susceptibility to colistin in vitro and improved treatment efficacy in vivo. These findings reveal new insight into the mechanism by which colistin kills bacteria, providing the foundations for novel approaches to enhance therapeutic outcomes.


Antibiotics are life-saving medicines, but many bacteria now have the ability to resist their effects. For some infections, all frontline antibiotics are now ineffective. To treat infections caused by these highly resistant bacteria, clinicians must use so-called 'antibiotics of last resort'. These antibiotics include a drug called colistin, which is moderately effective, but often fails to eradicate the infection. One of the challenges to making colistin more effective is that its mechanism is poorly understood. Bacteria have two layers of protection against the outside world: an outer cell membrane and an inner cell membrane. To kill them, colistin must punch holes in both. First, it disrupts the outer membrane by interacting with molecules called lipopolysaccharides. But how it disrupts the inner membrane was unclear. Bacteria have evolved several different mechanisms that make them resistant to the effects of colistin. Sabnis et al. reasoned that understanding how these mechanisms protected bacteria could reveal how the antibiotic works to damage the inner cell membrane. Sabnis et al. examined the effects of colistin on Escherichia coli bacteria with and without resistance to the antibiotic. Exposing these bacteria to colistin revealed that the antibiotic damages both layers of the cell surface in the same way, targeting lipopolysaccharide in the inner membrane as well as the outer membrane. Next, Sabnis et al. used this new information to make colistin work better. They found that the effects of colistin were magnified when it was combined with the experimental antibiotic murepavadin, which caused lipopolysaccharide to build up at the inner membrane. This allowed colistin to punch more holes through the inner membrane, making colistin more effective at killing bacteria. To find out whether this combination of colistin and murepavadin could work as a clinical treatment, Sabnis et al. tested it on mice with Pseudomonas aeruginosa infections in their lungs. Colistin was much better at killing Pseudomonas aeruginosa and treating infections when combined with murepavadin than it was on its own. Pseudomonas aeruginosa bacteria can cause infections in the lungs of people with cystic fibrosis. At the moment, patients receive colistin in an inhaled form to treat these infections, but it is not always successful. The second drug used in this study, murepavadin, is about to enter clinical trials as an inhaled treatment for lung infections too. If the trial is successful, it may be possible to use both drugs in combination to treat lung infections in people with cystic fibrosis.


Assuntos
Antibacterianos/farmacologia , Membrana Celular/efeitos dos fármacos , Colistina/farmacologia , Escherichia coli/efeitos dos fármacos , Lipopolissacarídeos/metabolismo , Viabilidade Microbiana/efeitos dos fármacos , Peptídeos Cíclicos/farmacologia , Infecções por Pseudomonas/tratamento farmacológico , Pseudomonas aeruginosa/efeitos dos fármacos , Infecções Respiratórias/tratamento farmacológico , Animais , Membrana Celular/metabolismo , Modelos Animais de Doenças , Farmacorresistência Bacteriana , Quimioterapia Combinada , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Feminino , Humanos , Fluidez de Membrana/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Infecções Respiratórias/microbiologia
5.
Adv Mater ; 32(9): e1903862, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31944430

RESUMO

Materials patterned with high-aspect-ratio nanostructures have features on similar length scales to cellular components. These surfaces are an extreme topography on the cellular level and have become useful tools for perturbing and sensing the cellular environment. Motivation comes from the ability of high-aspect-ratio nanostructures to deliver cargoes into cells and tissues, access the intracellular environment, and control cell behavior. These structures directly perturb cells' ability to sense and respond to external forces, influencing cell fate, and enabling new mechanistic studies. Through careful design of their nanoscale structure, these systems act as biological metamaterials, eliciting unusual biological responses. While predominantly used to interface eukaryotic cells, there is growing interest in nonanimal and prokaryotic cell interfacing. Both experimental and theoretical studies have attempted to develop a mechanistic understanding for the observed behaviors, predominantly focusing on the cell-nanostructure interface. This review considers how high-aspect-ratio nanostructured surfaces are used to both stimulate and sense biological systems.


Assuntos
Materiais Biocompatíveis/química , Técnicas Biossensoriais/instrumentação , Técnicas Biossensoriais/métodos , Células Eucarióticas/ultraestrutura , Nanoestruturas/química , Animais , Fenômenos Biomecânicos , Adesão Celular , Diferenciação Celular , Permeabilidade da Membrana Celular , Técnicas Eletroquímicas , Humanos , Metais/química , Processos Fotoquímicos , Polímeros/química , Porosidade , Silício/química , Propriedades de Superfície
6.
ACS Nano ; 14(5): 5371-5381, 2020 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-32330008

RESUMO

High-aspect-ratio nanostructures have emerged as versatile platforms for intracellular sensing and biomolecule delivery. Here, we present a microfabrication approach in which a combination of reactive ion etching protocols were used to produce high-aspect-ratio, nondegradable silicon nanoneedle arrays with tip diameters that could be finely tuned between 20 and 700 nm. We used these arrays to guide the long-term culture of human mesenchymal stem cells (hMSCs). Notably, we used changes in the nanoneedle tip diameter to control the morphology, nuclear size, and F-actin alignment of interfaced hMSCs and to regulate the expression of nuclear lamina genes, Yes-associated protein (YAP) target genes, and focal adhesion genes. These topography-driven changes were attributed to signaling by Rho-family GTPase pathways, differences in the effective stiffness of the nanoneedle arrays, and the degree of nuclear membrane impingement, with the latter clearly visualized using focused ion beam scanning electron microscopy (FIB-SEM). Our approach to design high-aspect-ratio nanostructures will be broadly applicable to design biomaterials and biomedical devices used for long-term cell stimulation and monitoring.


Assuntos
Nanoestruturas , Membrana Nuclear , Expressão Gênica , Humanos , Silício , Células-Tronco
7.
Chem Sci ; 10(14): 4004-4014, 2019 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-31015941

RESUMO

Engineering functional amyloids through a modular genetic strategy represents new opportunities for creating multifunctional molecular materials with tailored structures and performance. Despite important advances, how fusion modules affect the self-assembly and functional properties of amyloids remains elusive. Here, using Escherichia coli curli as a model system, we systematically studied the effect of flanking domains on the structures, assembly kinetics and functions of amyloids. The designed amyloids were composed of E. coli biofilm protein CsgA (as amyloidogenic cores) and one or two flanking domains, consisting of chitin-binding domains (CBDs) from Bacillus circulans chitinase, and/or mussel foot proteins (Mfps). Incorporation of fusion domains did not disrupt the typical ß-sheet structures, but indeed affected assembly rate, morphology, and stiffness of resultant fibrils. Consequently, the CsgA-fusion fibrils, particularly those containing three domains, were much shorter than the CsgA-only fibrils. Furthermore, the stiffness of the resultant fibrils was heavily affected by the structural feature of fusion domains, with ß-sheet-containing domains tending to increase the Young's modulus while random coil domains decreasing the Young's modulus. In addition, fibrils containing CBD domains showed higher chitin-binding activity compared to their CBD-free counterparts. The CBD-CsgA-Mfp3 construct exhibited significantly lower binding activity than Mfp5-CsgA-CBD due to inappropriate folding of the CBD domain in the former construct, in agreement with results based upon molecular dynamics modeling. Our study provides new insights into the assembly and functional properties of designer amyloid proteins with increasing complex domain structures and lays the foundation for the future design of functional amyloid-based structures and molecular materials.

8.
ACS Nano ; 13(3): 2913-2926, 2019 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-30829469

RESUMO

Biomaterial substrates can be engineered to present topographical signals to cells which, through interactions between the material and active components of the cell membrane, regulate key cellular processes and guide cell fate decisions. However, targeting mechanoresponsive elements that reside within the intracellular domain is a concept that has only recently emerged. Here, we show that mesoporous silicon nanoneedle arrays interact simultaneously with the cell membrane, cytoskeleton, and nucleus of primary human cells, generating distinct responses at each of these cellular compartments. Specifically, nanoneedles inhibit focal adhesion maturation at the membrane, reduce tension in the cytoskeleton, and lead to remodeling of the nuclear envelope at sites of impingement. The combined changes in actin cytoskeleton assembly, expression and segregation of the nuclear lamina, and localization of Yes-associated protein (YAP) correlate differently from what is canonically observed upon stimulation at the cell membrane, revealing that biophysical cues directed to the intracellular space can generate heretofore unobserved mechanosensory responses. These findings highlight the ability of nanoneedles to study and direct the phenotype of large cell populations simultaneously, through biophysical interactions with multiple mechanoresponsive components.


Assuntos
Mecanotransdução Celular/efeitos dos fármacos , Nanoestruturas/química , Silício/farmacologia , Adesão Celular/efeitos dos fármacos , Células Cultivadas , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Humanos , Agulhas , Tamanho da Partícula , Porosidade , Silício/química , Propriedades de Superfície
9.
Nanoscale ; 6(22): 13761-9, 2014 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-25286147

RESUMO

Carbon nano-onions (CNOs) are an exciting class of carbon nanomaterials, which have recently demonstrated a facile cell-penetration capability. In the present work, highly fluorescent boron dipyrromethene (BODIPY) dyes were covalently attached to the surface of CNOs. The introduction of this new carbon nanomaterial-based imaging platform, made of CNOs and BODIPY fluorophores, allows for the exploration of synergetic effects between the two building blocks and for the elucidation of its performance in biological applications. The high fluorescence intensity exhibited by the functionalized CNOs translates into an excellent in vitro probe for the high resolution imaging of MCF-7 human breast cancer cells. It was also found that the CNOs, internalized by the cells by endocytosis, localized in the lysosomes and did not show any cytotoxic effects. The presented results highlight CNOs as excellent platforms for biological and biomedical studies due to their low toxicity, efficient cellular uptake and low fluorescence quenching of attached probes.


Assuntos
Compostos de Boro/química , Carbono/química , Nanoestruturas/química , Imagem Óptica/métodos , Compostos de Boro/farmacocinética , Sobrevivência Celular/efeitos dos fármacos , Humanos , Células MCF-7 , Teste de Materiais , Microscopia de Força Atômica , Imagem Molecular/métodos , Espectrometria de Fluorescência/métodos , Espectroscopia de Infravermelho com Transformada de Fourier/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA