Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Indoor Air ; 31(6): 1798-1814, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34121229

RESUMO

The spread of breathing air when playing wind instruments and singing was investigated and visualized using two methods: (1) schlieren imaging with a schlieren mirror and (2) background-oriented schlieren (BOS). These methods visualize airflow by visualizing density gradients in transparent media. The playing of professional woodwind and brass instrument players, as well as professional classical trained singers were investigated to estimate the spread distances of the breathing air. For a better comparison and consistent measurement series, a single high note, a single low note, and an extract of a musical piece were investigated. Additionally, anemometry was used to determine the velocity of the spreading breathing air and the extent to which it was quantifiable. The results showed that the ejected airflow from the examined instruments and singers did not exceed a spreading range of 1.2 m into the room. However, differences in the various instruments have to be considered to assess properly the spread of the breathing air. The findings discussed below help to estimate the risk of cross-infection for wind instrument players and singers and to develop efficacious safety precautions, which is essential during critical health periods such as the current COVID-19 pandemic.


Assuntos
Movimentos do Ar , Canto , Poluição do Ar em Ambientes Fechados , COVID-19 , Humanos
2.
J Clin Med ; 12(4)2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-36835835

RESUMO

Physical exercise demonstrates a special case of aerosol emission due to its associated elevated breathing rate. This can lead to a faster spread of airborne viruses and respiratory diseases. Therefore, this study investigates cross-infection risk during training. Twelve human subjects exercised on a cycle ergometer under three mask scenarios: no mask, surgical mask, and FFP2 mask. The emitted aerosols were measured in a grey room with a measurement setup equipped with an optical particle sensor. The spread of expired air was qualitatively and quantitatively assessed using schlieren imaging. Moreover, user satisfaction surveys were conducted to evaluate the comfort of wearing face masks during training. The results indicated that both surgical and FFP2 masks significantly reduced particles emission with a reduction efficiency of 87.1% and 91.3% of all particle sizes, respectively. However, compared to surgical masks, FFP2 masks provided a nearly tenfold greater reduction of the particle size range with long residence time in the air (0.3-0.5 µm). Furthermore, the investigated masks reduced exhalation spreading distances to less than 0.15 m and 0.1 m in the case of the surgical mask and FFP2 mask, respectively. User satisfaction solely differed with respect to perceived dyspnea between no mask and FFP2 mask conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA