Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Chem Biodivers ; 12(2): 179-93, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25676502

RESUMO

ß(3) -Octaarginine chains were attached to the functional groups NH and CO2 H of the antibacterial fluoroquinolones ciprofloxacin (→1) and enrofloxacin (→2), respectively, in order to find out whether the activity increases by attachment of the polycationic, cell-penetrating peptide (CPP) moiety. For comparison, simple amides, 3-5, of the two antimicrobial compounds and ß(3) -octaarginine amide (ßR8 ) were included in the antibacterial susceptibility tests to clarify the impact of chemical modification on the microbiological activity of either scaffold (Table).


Assuntos
Antibacterianos/química , Peptídeos Penetradores de Células/química , Ciprofloxacina/química , Fluoroquinolonas/química , Oligopeptídeos/química , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Sítios de Ligação , Ciprofloxacina/metabolismo , Ciprofloxacina/farmacologia , DNA Girase/química , DNA Girase/metabolismo , Enrofloxacina , Fluoroquinolonas/metabolismo , Fluoroquinolonas/farmacologia , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Estrutura Terciária de Proteína , Relação Estrutura-Atividade
2.
Chem Biodivers ; 12(5): 697-732, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-26010661

RESUMO

Many years ago, ß(2) /ß(3) -peptides, consisting of alternatively arranged ß(2) - and ß(3) h-amino-acid residues, have been found to undergo folding to a unique type of helix, the 10/12-helix, and to exhibit non-polar, lipophilic properties (Helv. Chim. Acta 1997, 80, 2033). We have now synthesized such 'mixed' hexa-, nona-, dodeca-, and octadecapeptides, consisting of Val-Ala-Leu triads, with N-terminal fluorescein (FAM) labels, i.e., 1-4, and studied their interactions with POPC (=1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine) giant unilamellar vesicles (GUVs) and with human white blood cancer cells U937. The methods used were microfluidic technology, fluorescence correlation spectroscopy (FCS), a flow-cytometry assay, a membrane-toxicity assay with the dehydrogenase G6PDH as enzymatic reporter, and visual microscopy observations. All ß(3) /ß(2) -peptide derivatives penetrate the GUVs and/or the cells. As shown with the isomeric ß(3) /ß(2) -, ß(3) -, and ß(2) -nonamers, 2, 5, and 6, respectively, the derivatives 5 and 6 consisting exclusively of ß(3) - or ß(2) -amino-acid residues, respectively, interact neither with the vesicles nor with the cells. Depending on the method of investigation and on the pretreatment of the cells, the ß(3) /ß(2) -nonamer and/or the ß(3) /ß(2) -dodecamer derivative, 2 and/or 3, respectively, cause a surprising disintegration or lysis of the GUVs and cells, comparable with the action of tensides, viral fusion peptides, and host-defense antimicrobial peptides. Possible sources of the chain-length-dependent destructive potential of the ß(3) /ß(2) -nona- and ß(3) /ß(2) -dodecapeptide derivatives, and a possible relationship with the phosphate-to-phosphate and hydrocarbon thicknesses of GUVs, and eukaryotic cells are discussed. Further investigations with other types of GUVs and of eukaryotic or prokaryotic cells will be necessary to elucidate the mechanism(s) of interaction of 'mixed' ß(3) /ß(2) -peptides with membranes and to evaluate possible biomedical applications.


Assuntos
Peptídeos Penetradores de Células/química , Linfoma Difuso de Grandes Células B/patologia , Oligopeptídeos/química , Fosfatidilcolinas/química , Lipossomas Unilamelares/química , Morte Celular , Peptídeos Penetradores de Células/síntese química , Citometria de Fluxo , Humanos , Modelos Moleculares , Estrutura Molecular , Oligopeptídeos/síntese química , Células U937
3.
Chem Biodivers ; 10(7): 1165-84, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23847063

RESUMO

Cell-penetrating peptides (CPPs) are promising vehicles for delivery of drugs, antibiotics, proteins, nucleic acid derivatives, etc. into eukaryotic and prokaryotic target cells. To prevent premature degradation, CPPs consisting of D- or ß-amino acid residues have been used. We present simple models for the various modes of delivery of physiologically active cargoes by CPPs, depending on the nature of their conjugation (Fig. 1), and we describe the plasma stability of oligoarginines (OAs) 1-4, the most common unnatural CPPs. Fluorescein-labeled L-octaarginine 1 was found to have a half-life (t1/2 ) of <0.5 min, the D-enantiomer (2) of >7 d (Fig. 2). For possible medicinal applications, the former type of derivative would be too unstable, and the latter one undesirably persistent. Thus, seven of the 256 possible 'mixed' Flua-L/D-octaarginine amides, 4a-4g, were synthesized and shown to have half-lives in heparine-stabilized human plasma between 8 min and 5.5 h (Figs. 3 and 4). The cell penetration of the new OAs was investigated with 'healthy' and with apoptotic HEK cells (Figs. 5-8), and their interactions with phospholipid bilayers were studied, using anionic lipid vesicles (Figs. 9 and 10). There are surprisingly large differences in the rates of cell penetration and binding to vesicle walls between the various stereoisomeric octaarginine derivatives 1, 2, and 4a-4g (Figs. 5 and 7). - The role of D-amino acids and D-peptides in nature and in drug design is briefly discussed and referenced.


Assuntos
Peptídeos Penetradores de Células/química , Oligopeptídeos/química , Sequência de Aminoácidos , Permeabilidade da Membrana Celular , Peptídeos Penetradores de Células/sangue , Peptídeos Penetradores de Células/metabolismo , Fluoresceína/química , Células HEK293 , Meia-Vida , Humanos , Bicamadas Lipídicas/química , Microscopia Confocal , Oligopeptídeos/sangue , Oligopeptídeos/metabolismo , Estereoisomerismo
4.
Chem Biodivers ; 5(7): 1213-24, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18649310

RESUMO

Octreotate (1b) is the octreotide (SANDOSTATIN; 1a) analogue, carrying a C-terminal CO(2)H (Thr) instead of the CH(2)OH (threoninol) group. In pursuit of our interest in unnatural peptides, we have now synthesized (by the solid-phase Fmoc method) the enantiomeric form 2 of octreotate and determined its affinity for the five human somatostatin (SRIF) receptors (hsst(1-5)). The binding was found to be 9.1, 4.1, 1.0, 1.4, and 4.2 microM, respectively. This almost equal one-digit micromolar affinity of ent-octreotate (2) to all five receptors contrasts with the behavior of most other somatostatin mimics including SANDOSTATIN (octreotide; 1a) and [Tyr(3)]-octreotate (1c), which have affinities for the various receptors differing up to and above 10(4)-fold. Thus, the structure of the new compound does not prevent binding, albeit more weakly than its pseudo-enantiomer octreotide, and there is hardly any selectivity of the peptide-protein interaction (PPI) for any one of the five SRIF G-protein coupled receptors (GPCRs). Since the detailed structure(s) of these membrane-embedded receptors is unknown (no X-ray structure!), the result described here may be useful for modeling structures by comparing the affinities of the numerous known somatostatin mimics.


Assuntos
Octreotida/análogos & derivados , Octreotida/metabolismo , Receptores de Somatostatina/metabolismo , Dicroísmo Circular , Humanos , Ressonância Magnética Nuclear Biomolecular , Peptídeos Cíclicos/metabolismo , Estereoisomerismo
5.
Helv Chim Acta ; 101(10)2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30905972

RESUMO

Oligo-arginines are thoroughly studied cell-penetrating peptides (CPPs, Figures 1 and 2). Previous in-vitro investigations with the octaarginine salt of the phosphonate fosmidomycin (herbicide and anti-malaria drug) have shown a 40-fold parasitaemia inhibition with P. falciparum, compared to fosmidomycin alone (Figure 3). We have now tested this salt, as well as the corresponding phosphinate salt of the herbicide glufosinate, for herbicidal activity with whole plants by spray application, hoping for increased activities, i.e. decreased doses. However, both salts showed low herbicidal activity, indicating poor foliar uptake (Table 1). Another pronounced difference between in-vitro and in-vivo activity was demonstrated with various cell-penetrating octaarginine salts of fosmidomycin: intravenous injection to mice caused exitus of the animals within minutes, even at doses as low as 1.4 µmol/kg (Table 2). The results show that use of CPPs for drug delivery, for instance to cancer cells and tissues, must be considered with due care. The biopolymer cyanophycin is a poly-aspartic acid containing argininylated side chains (Figure 4); its building block is the dipeptide H-ßAsp-αArg-OH (H-Adp-OH). To test and compare the biological properties with those of octaarginines we synthesized Adp8-derivatives (Figure 5). Intravenouse injection of H-Adp8-NH2 into the tail vein of mice with doses as high as 45 µmol/kg causes no symptoms whatsoever (Table 3), but H-Adp8-NH2 is not cell penetrating (HEK293 and MCF-7 cells, Figure 6). On the other hand, the fluorescently labeled octamers FAM-(Adp(OMe))8-NH2 and FAM-(Adp(NMe2))8-NH2 with ester and amide groups in the side chains exhibit mediocre to high cell-wall permeability (Figure 6), and are toxic (Table 3). Possible reasons for this behavior are discussed (Figure 7) and corresponding NMR spectra are presented (Figure 8).

6.
Chem Biodivers ; 1(8): 1111-239, 2004 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17191902

RESUMO

The origins of our nearly ten-year research program of chemical and biological investigations into peptides based on homologated proteinogenic amino acids are described. The road from the biopolymer poly[ethyl (R)-3-hydroxybutanoate] to the beta-peptides was primarily a step from organic synthesis methodology (the preparation of enantiomerically pure compounds (EPCs)) to supramolecular chemistry (higher-order structures maintained through non-covalent interactions). The performing of biochemical and biological tests on the beta- and gamma-peptides, which differ from natural peptides/proteins by a single or two additional CH(2) groups per amino acid, then led into bioorganic chemistry and medicinal chemistry. The individual chapters of this review article begin with descriptions of work on beta-amino acids, beta-peptides, and polymers (Nylon-3) that dates back to the 1960s, even to the times of Emil Fischer, but did not yield insights into structures or biological properties. The numerous, often highly physiologically active, or even toxic, natural products containing beta- and gamma-amino acid moieties are then presented. Chapters on the preparation of homologated amino acids with proteinogenic side chains, their coupling to provide the corresponding peptides, both in solution (including thioligation) and on the solid phase, their isolation by preparative HPLC, and their characterization by mass spectrometry (HR-MS and MS sequencing) follow. After that, their structures, predominantly determined by NMR spectroscopy in methanolic solution, are described: helices, pleated sheets, and turns, together with stack-, crankshaft-, paddlewheel-, and staircase-like patterns. The presence of the additional C--C bonds in the backbones of the new peptides did not give rise to a chaotic increase in their secondary structures as many protein specialists might have expected: while there are indeed more structure types than are observed in the alpha-peptide realm - three different helices (10/12-, 12-, and 14-helix) if we include oligomers of trans-2-aminocyclopentanecarboxylic acid, for example - the structures are already observable with chains made up of only four components, and, having now undergone a learning process, we are able to construct them by design. The structures of the shorter beta-peptides can also be reliably determined by molecular-dynamics calculations (in solution; GROMOS program package). Unlike in the case of the natural helices, these compounds' folding into secondary structures is not cooperative. In beta- and gamma-peptides, it is possible to introduce heteroatom substituents (such as halogen or OH) onto the backbones or to incorporate heteroatoms (NH, O) directly into the chain, and, thanks to this, it has been possible to study effects unobservable in the world of the alpha-peptides. Tests with proteolytic enzymes of all types (from mammals, microorganisms, yeasts) and in vivo examination (mice, rats, insects, plants) showed beta- and gamma-peptides to be completely stable towards proteolysis and, as demonstrated for two beta-peptides, extraordinarily stable towards metabolism, even when bearing functionalized side chains (such as those of Thr, Tyr, Trp, Lys, or Arg). The beta-peptides so far examined also normally display no or only very weak cytotoxic, antiproliferative, antimicrobial, hemolytic, immunogenic, or inflammatory properties either in cell cultures or in vivo. Even biological degradation by microbial colonies of the types found in sewage-treatment plants or in soil is very slow. That there are indeed interactions of beta- and gamma-peptides with biological systems, however, can be seen in the following findings: i) organ-specific distribution takes place after intravenous (i.v.) administration in rats, ii) transport through the intestines of rodents has been observed, iii) beta-peptides with positively charged side chains (Arg and Lys) settle on cell surfaces, are able to enter into mammalian cells (fibroplasts, keratinocytes, HeLa cells), and migrate into their cell nuclei (and nucleoli), and iv) in one case, it has already been established that a beta-peptide derivative can up- and down-regulate gene expression rates. Besides these less sharply definable interactions, it has also been possible to construct beta- and gamma-peptide agonists of naturally occurring peptide hormones, MHC-binding beta-peptides, or amphipathic beta-peptide inhibitors of membrane-bound proteins in a controlled fashion. Examples include somatostatin mimics and the suppression of cholesterol transport through the intestinal brush-border membrane (by the SR-BI-protein). The results so far obtained from investigations into peptides made up of homologues of the proteinogenic amino acids also represent a contribution to deepening of our knowledge of the natural peptides/proteins, while potential for biomedicinal application of this new class of substances has also been suggested.


Assuntos
Aminoácidos/química , Aminoácidos/síntese química , Peptídeos/química , Peptídeos/síntese química , Sequência de Aminoácidos , Animais , Humanos , Dados de Sequência Molecular , Peptídeos/classificação , Conformação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína
7.
Angew Chem Int Ed Engl ; 40(1): 92-138, 2001 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-11169693

RESUMO

TADDOLs, which contain two adjacent diarylhydroxymethyl groups in a trans relationship on a 1,3-dioxolane ring, can be prepared from acetals or ketals of tartrate esters by reaction of the latter with aromatic Grignard reagents. They are extraordinarily versatile chiral auxiliaries. Here, a historical review of the subject is followed by discussion of the preparation of TADDOLs and analogous systems, including TADDOLs with N-, P-, O-, and S-heteroatom ligands appropriate for metals. Crystal structure analysis reveals that the heteroatoms on the diarylmethyl groups are almost always in close proximity to each other, joined together by H-bonds, and predisposed to form chelate complexes in which the metallic centers reside in propeller-like chiral environments. Applications of TADDOL derivatives in enantioselective synthesis extend from utilization as stoichiometric chiral reagents or in Lewis acid mediated reactions, to roles in catalytic hydrogenation and stereoregular metathesis polymerization. Derivatives and complexes based on the following metals have so far been investigated: Li, B, Mg, Al, Si, Cu, Zn, Ce, Ti, Zr, Mo, Rh, Ir, Pd, Pt. The number of stereoselective reactions already accomplished with TADDOLs is correspondingly large. It is also easy to prepare TADDOL derivatives that are readily polymerizable and graftable, and to transform them into immobilized solid-phase catalysts. The result is catalysts, simply or dendritically immobilized in polystyrene or on silica gel and characterized by unexpected stability even after multiple use in titanium TADDOLate mediated reactions. TADDOLs show further unusual characteristics that make them useful for applications in material science and supramolecular chemistry: they are the most effective doping agents known for phase transformations of achiral (nematic) into chiral (cholesteric) liquid crystals. The TADDOL OH group that is not involved in intramolecular H-bonding shows a strong tendency to associate intermolecularly with H-bond acceptors. In the process of crystallization this leads, enantioselectively, to the formation of inclusion compounds that lend themselves to the separation of racemic mixtures not otherwise suited to the classical method of crystallization through diastereomeric salts. The high melting points of TADDOLs even make possible the resolution of racemates by distillation! Host-guest compounds formed between TADDOLs and achiral partners can serve as platforms for enantioselective photoreactions. It seems safe to predict that many more applications will be discovered for the TADDOLs and their derivatives. Supporting information for this article is available on the WWW under http://www.angewandte.com or from the author.

8.
J Org Chem ; 68(21): 8222-31, 2003 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-14535806

RESUMO

The epoxidation of allylic alcohols is shown to be efficiently and selectively catalyzed by the oxidatively resistant sandwich-type polyoxometalates, POMs, namely [WZnM(2)(ZnW(9)O(34))(2)](q)(-) [M = OV(IV), Mn(II), Ru(III), Fe(III), Pd(II), Pt(II), Zn(II); q = 10-12], with organic hydroperoxides as oxygen source. Conspicuous is the fact that the nature of the transition metal M in the central ring of polyoxometalate affects significantly the reactivity, chemoselectivity, regioselectivity, and stereoselectivity of the allylic alcohol epoxidation. For the first time, it is demonstrated that the oxovanadium(IV)-substituted POM, namely [ZnW(VO)(2)(ZnW(9)O(34))(2)](12-), is a highly chemoselective, regioselective, and also stereoselective catalyst for the clean epoxidation of allylic alcohols. A high enantioselectivity (er values up to 95:5) has been achieved with [ZnW(VO)(2)(ZnW(9)O(34))(2)](12)(-) and the sterically demanding TADOOL-derived hydroperoxide TADOOH as regenerative chiral oxygen source. Thus, a POM-catalyzed asymmetric epoxidation of excellent catalytic efficiency (up to 42 000 TON) has been made available for the development of sustainable oxidation processes. The high reactivity and selectivity of this unprecedented oxygen-transfer process are mechanistically rationalized in terms of a peroxy-type vanadium(V) template.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA