RESUMO
STUDY QUESTION: Which genetic factors regulate female propensity for giving birth to spontaneous dizygotic (DZ) twins? SUMMARY ANSWER: We identified four new loci, GNRH1, FSHR, ZFPM1, and IPO8, in addition to previously identified loci, FSHB and SMAD3. WHAT IS KNOWN ALREADY: The propensity to give birth to DZ twins runs in families. Earlier, we reported that FSHB and SMAD3 as associated with DZ twinning and female fertility measures. STUDY DESIGN, SIZE, DURATION: We conducted a genome-wide association meta-analysis (GWAMA) of mothers of spontaneous dizygotic (DZ) twins (8265 cases, 264â567 controls) and of independent DZ twin offspring (26â252 cases, 417â433 controls). PARTICIPANTS/MATERIALS, SETTING, METHODS: Over 700â000 mothers of DZ twins, twin individuals and singletons from large cohorts in Australia/New Zealand, Europe, and the USA were carefully screened to exclude twins born after use of ARTs. Genetic association analyses by cohort were followed by meta-analysis, phenome wide association studies (PheWAS), in silico and in vivo annotations, and Zebrafish functional validation. MAIN RESULTS AND THE ROLE OF CHANCE: This study enlarges the sample size considerably from previous efforts, finding four genome-wide significant loci, including two novel signals and a further two novel genes that are implicated by gene level enrichment analyses. The novel loci, GNRH1 and FSHR, have well-established roles in female reproduction whereas ZFPM1 and IPO8 have not previously been implicated in female fertility. We found significant genetic correlations with multiple aspects of female reproduction and body size as well as evidence for significant selection against DZ twinning during human evolution. The 26 top single nucleotide polymorphisms (SNPs) from our GWAMA in European-origin participants weakly predicted the crude twinning rates in 47 non-European populations (r = 0.23 between risk score and population prevalence, s.e. 0.11, 1-tail P = 0.058) indicating that genome-wide association studies (GWAS) are needed in African and Asian populations to explore the causes of their respectively high and low DZ twinning rates. In vivo functional tests in zebrafish for IPO8 validated its essential role in female, but not male, fertility. In most regions, risk SNPs linked to known expression quantitative trait loci (eQTLs). Top SNPs were associated with in vivo reproductive hormone levels with the top pathways including hormone ligand binding receptors and the ovulation cycle. LARGE SCALE DATA: The full DZT GWAS summary statistics will made available after publication through the GWAS catalog (https://www.ebi.ac.uk/gwas/). LIMITATIONS, REASONS FOR CAUTION: Our study only included European ancestry cohorts. Inclusion of data from Africa (with the highest twining rate) and Asia (with the lowest rate) would illuminate further the biology of twinning and female fertility. WIDER IMPLICATIONS OF THE FINDINGS: About one in 40 babies born in the world is a twin and there is much speculation on why twinning runs in families. We hope our results will inform investigations of ovarian response in new and existing ARTs and the causes of female infertility. STUDY FUNDING/COMPETING INTEREST(S): Support for the Netherlands Twin Register came from the Netherlands Organization for Scientific Research (NWO) and The Netherlands Organization for Health Research and Development (ZonMW) grants, 904-61-193, 480-04-004, 400-05-717, Addiction-31160008, 911-09-032, Biobanking and Biomolecular Resources Research Infrastructure (BBMRI.NL, 184.021.007), Royal Netherlands Academy of Science Professor Award (PAH/6635) to DIB, European Research Council (ERC-230374), Rutgers University Cell and DNA Repository (NIMH U24 MH068457-06), the Avera Institute, Sioux Falls, South Dakota (USA) and the National Institutes of Health (NIH R01 HD042157-01A1) and the Genetic Association Information Network (GAIN) of the Foundation for the National Institutes of Health and Grand Opportunity grants 1RC2 MH089951. The QIMR Berghofer Medical Research Institute (QIMR) study was supported by grants from the National Health and Medical Research Council (NHMRC) of Australia (241944, 339462, 389927, 389875, 389891, 389892, 389938, 443036, 442915, 442981, 496610, 496739, 552485, 552498, 1050208, 1075175). L.Y. is funded by Australian Research Council (Grant number DE200100425). The Minnesota Center for Twin and Family Research (MCTFR) was supported in part by USPHS Grants from the National Institute on Alcohol Abuse and Alcoholism (AA09367 and AA11886) and the National Institute on Drug Abuse (DA05147, DA13240, and DA024417). The Women's Genome Health Study (WGHS) was funded by the National Heart, Lung, and Blood Institute (HL043851 and HL080467) and the National Cancer Institute (CA047988 and UM1CA182913), with support for genotyping provided by Amgen. Data collection in the Finnish Twin Registry has been supported by the Wellcome Trust Sanger Institute, the Broad Institute, ENGAGE-European Network for Genetic and Genomic Epidemiology, FP7-HEALTH-F4-2007, grant agreement number 201413, National Institute of Alcohol Abuse and Alcoholism (grants AA-12502, AA-00145, AA-09203, AA15416, and K02AA018755) and the Academy of Finland (grants 100499, 205585, 118555, 141054, 264146, 308248, 312073 and 336823 to J. Kaprio). TwinsUK is funded by the Wellcome Trust, Medical Research Council, Versus Arthritis, European Union Horizon 2020, Chronic Disease Research Foundation (CDRF), Zoe Ltd and the National Institute for Health Research (NIHR) Clinical Research Network (CRN) and Biomedical Research Centre based at Guy's and St Thomas' NHS Foundation Trust in partnership with King's College London. For NESDA, funding was obtained from the Netherlands Organization for Scientific Research (Geestkracht program grant 10000-1002), the Center for Medical Systems Biology (CSMB, NVVO Genomics), Biobanking and Biomolecular Resources Research Infrastructure (BBMRI-NL), VU University's Institutes for Health and Care Research (EMGO+) and Neuroscience Campus Amsterdam, University Medical Center Groningen, Leiden University Medical Center, National Institutes of Health (NIH, ROI D0042157-01A, MH081802, Grand Opportunity grants 1 RC2 Ml-1089951 and IRC2 MH089995). Part of the genotyping and analyses were funded by the Genetic Association Information Network (GAIN) of the Foundation for the National Institutes of Health. Computing was supported by BiG Grid, the Dutch e-Science Grid, which is financially supported by NWO. Work in the Del Bene lab was supported by the Programme Investissements d'Avenir IHU FOReSIGHT (ANR-18-IAHU-01). C.R. was supported by an EU Horizon 2020 Marie Sklodowska-Curie Action fellowship (H2020-MSCA-IF-2014 #661527). H.S. and K.S. are employees of deCODE Genetics/Amgen. The other authors declare no competing financial interests. TRIAL REGISTRATION NUMBER: N/A.
Assuntos
Fertilidade , Estudo de Associação Genômica Ampla , Gemelação Dizigótica , Animais , Feminino , Humanos , Gravidez , Proteínas de Transporte/genética , Fertilidade/genética , Hormônios , Proteínas/genética , Estados Unidos , Peixe-Zebra/genéticaRESUMO
Birth weight (BW) is an important predictor of newborn survival and health and has associations with many adult health outcomes, including cardiometabolic disorders, autoimmune diseases and mental health. On average, twins have a lower BW than singletons as a result of a different pattern of fetal growth and shorter gestational duration. Therefore, investigations into the genetics of BW often exclude data from twins, leading to a reduction in sample size and remaining ambiguities concerning the genetic contribution to BW in twins. In this study, we carried out a genome-wide association meta-analysis of BW in 42 212 twin individuals and found a positive correlation of beta values (Pearson's r = 0.66, 95% confidence interval [CI]: 0.47-0.77) with 150 previously reported genome-wide significant variants for singleton BW. We identified strong positive genetic correlations between BW in twins and numerous anthropometric traits, most notably with BW in singletons (genetic correlation [rg] = 0.92, 95% CI: 0.66-1.18). Genetic correlations of BW in twins with a series of health-related traits closely resembled those previously observed for BW in singletons. Polygenic scores constructed from a genome-wide association study on BW in the UK Biobank demonstrated strong predictive power in a target sample of Dutch twins and singletons. Together, our results indicate that a similar genetic architecture underlies BW in twins and singletons and that future genome-wide studies might benefit from including data from large twin registers.
Assuntos
Estudo de Associação Genômica Ampla , Gravidez de Gêmeos , Adulto , Peso ao Nascer/genética , Desenvolvimento Fetal , Idade Gestacional , Humanos , Recém-Nascido , Gêmeos/genéticaRESUMO
Habitat loss and changing climate have direct impacts on native species but can also interact with disease pathogens to influence wildlife communities. In the North American Great Plains, black-tailed prairie dogs (Cynomys ludovicianus) are a keystone species that create important grassland habitat for numerous species and serve as prey for predators, but lethal control driven by agricultural conflict has severely reduced their abundance. Novel disease dynamics caused by epizootic plague (Yersinia pestis) within prairie dog colonies have further reduced prairie dog abundances, in turn destabilizing associated wildlife communities. We capitalized on a natural experiment, collecting data on prairie dog distributions, vegetation structure, avian abundance, and mesocarnivore and ungulate occupancy before (2015-2017) and after (2018-2019) a plague event in northeastern Wyoming, USA. Plague decimated black-tailed prairie dog populations in what was then the largest extant colony complex, reducing colony cover in the focal area from more than 10,000 ha to less than 50 ha. We documented dramatic declines in mesocarnivore occupancy and raptor abundance post-plague, with probability of occupancy or abundance approaching zero in species that rely on prairie dogs for a high proportion of their diet (e.g., ferruginous hawk [Buteo regalis], American badger [Taxidea taxus], and swift fox [Vulpes velox]). Following the plague outbreak, abnormally high precipitation in 2018 hastened vegetation recovery from prairie dog disturbance on colonies in which constant herbivory had formerly maintained shortgrass structure necessary for certain colony-associates. As a result, we observed large shifts in avian communities on former prairie dog colonies, including near-disappearance of mountain plovers (Charadrius montanus) and increases in mid-grass associated songbirds (e.g., lark bunting [Calamospiza melanocorys]). Our research highlights how precipitation can interact with disease-induced loss of a keystone species to induce drastic and rapid shifts in wildlife communities. Although grassland taxa have co-evolved with high spatiotemporal variation, fragmentation of the remaining North American rangelands paired with higher-than-historical variability in climate and disease dynamics are likely to destabilize these systems in the future.
Assuntos
Charadriiformes , Peste , Aves Canoras , Animais , Peste/veterinária , Peste/epidemiologia , Ecossistema , Animais Selvagens , Tempo (Meteorologia) , Sciuridae , RaposasRESUMO
Female fertility is a complex trait with age-specific changes in spontaneous dizygotic (DZ) twinning and fertility. To elucidate factors regulating female fertility and infertility, we conducted a genome-wide association study (GWAS) on mothers of spontaneous DZ twins (MoDZT) versus controls (3273 cases, 24,009 controls). This is a follow-up study to the Australia/New Zealand (ANZ) component of that previously reported (Mbarek et al., 2016), with a sample size almost twice that of the entire discovery sample meta-analysed in the previous article (and five times the ANZ contribution to that), resulting from newly available additional genotyping and representing a significant increase in power. We compare analyses with and without male controls and show unequivocally that it is better to include male controls who have been screened for recent family history, than to use only female controls. Results from the SNP based GWAS identified four genomewide significant signals, including one novel region, ZFPM1 (Zinc Finger Protein, FOG Family Member 1), on chromosome 16. Previous signals near FSHB (Follicle Stimulating Hormone beta subunit) and SMAD3 (SMAD Family Member 3) were also replicated (Mbarek et al., 2016). We also ran the GWAS with a dominance model that identified a further locus ADRB2 on chr 5. These results have been contributed to the International Twinning Genetics Consortium for inclusion in the next GWAS meta-analysis (Mbarek et al., in press).
RESUMO
The National Center for Biotechnology Information (NCBI) provides a large suite of online resources for biological information and data, including the GenBank® nucleic acid sequence database and the PubMed® database of citations and abstracts published in life science journals. The Entrez system provides search and retrieval operations for most of these data from 34 distinct databases. The E-utilities serve as the programming interface for the Entrez system. Custom implementations of the BLAST program provide sequence-based searching of many specialized datasets. New resources released in the past year include a new PubMed interface and NCBI datasets. Additional resources that were updated in the past year include PMC, Bookshelf, Genome Data Viewer, SRA, ClinVar, dbSNP, dbVar, Pathogen Detection, BLAST, Primer-BLAST, IgBLAST, iCn3D and PubChem. All of these resources can be accessed through the NCBI home page at https://www.ncbi.nlm.nih.gov.
Assuntos
Bases de Dados Genéticas , National Library of Medicine (U.S.) , Biologia Computacional/métodos , Bases de Dados de Compostos Químicos , Bases de Dados de Ácidos Nucleicos , Bases de Dados de Proteínas , Genômica/métodos , Humanos , PubMed , Estados UnidosRESUMO
The field of DNA methylation research is rapidly evolving, focusing on disease and phenotype changes over time using methylation measurements from diverse tissue sources and multiple array platforms. Consequently, identifying the extent of longitudinal, inter-tissue, and inter-platform variation in DNA methylation is crucial for future advancement. DNA methylation was measured in 375 individuals, with 197 of those having 2 blood sample measurements ~10 years apart. Whole-blood samples were measured on Illumina Infinium 450K and EPIC methylation arrays, and buccal samples from a subset of 58 participants were measured on EPIC array. The data were analyzed with the aims to examine the correlation between methylation levels in longitudinal blood samples in 197 individuals, examine the correlation between methylation levels in the blood and buccal samples in 58 individuals, and examine the correlation between blood methylation profiles assessed on the EPIC and 450K arrays in 83 individuals. We identified 136,833, 7674, and 96,891 CpGs significantly and strongly correlated (>0.50) longitudinally, across blood and buccal samples as well as array platforms, respectively. A total of 3674 of these CpGs were shared across all three sets. Analysis of these shared CpGs identified previously found associations with aging, ancestry, and 7016 mQTLs as well.
Assuntos
Envelhecimento , Metilação de DNA , Humanos , Estudos Transversais , Ilhas de CpG , Epigênese GenéticaRESUMO
INTRODUCTION: During the coronavirus disease 2019 (COVID-19) pandemic, real-time reverse transcription polymerase chain reaction (RT-PCR) became an essential tool for laboratories to provide high-sensitivity qualitative diagnostic testing for patients and real-time data to public health officials. Here we explore the predictive value of quantitative data from RT-PCR cycle threshold (Ct) values in epidemiological measures, symptom presentation, and variant transition. METHODS: To examine the association with hospitalizations and deaths, data from 74,479 patients referred to the Avera Institute for Human Genetics (AIHG) for COVID-19 testing in 2020 were matched by calendar week to epidemiological data reported by the South Dakota Department of Health. We explored the association between symptom data, patient age, and Ct values for 101 patients. We also explored changes in Ct values during variant transition detected by genomic surveillance sequencing of the AIHG testing population during 2021. RESULTS: Measures from AIHG diagnostic testing strongly explain variance in the South Dakota state positivity percentage (R2 = 0.758), a two-week delay in hospitalizations (R2 = 0.856), and a four-week delay in deaths (R2 = 0.854). Based on factor analysis of patient symptoms, three groups could be distinguished which had different presentations of age, Ct value, and time from collection. Additionally, conflicting Ct value results among SARSCoV- 2 variants during variant transition may reflect the community transmission dynamics. CONCLUSIONS: Measures of Ct value in RT-PCR diagnostic assays combined with routine screening have valuable applications in monitoring the dynamics of SARS-CoV-2 within communities.
Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/diagnóstico , COVID-19/epidemiologia , Teste para COVID-19 , Hospitalização , PandemiasRESUMO
Increasing amounts of genetic data have led to the development of polygenic risk scores (PRSs) for a variety of diseases. These scores, built from the summary statistics of genome-wide association studies (GWASs), are able to stratify individuals based on their genetic risk of developing various common diseases and could potentially be used to optimize the use of screening and preventative treatments and improve personalized care for patients. Many challenges are yet to be overcome, including PRS validation, healthcare professional and patient education, and healthcare systems integration. Ethical challenges are also present in how this information is used and the current lack of diverse populations with PRSs available. In this review, we discuss the topics above and cover the nature of PRSs, visualization schemes, and how PRSs can be improved. With these tools on the horizon for multiple diseases, scientists, clinicians, health systems, regulatory bodies, and the public should discuss the uses, benefits, and potential risks of PRSs.
Assuntos
Doenças Genéticas Inatas/genética , Predisposição Genética para Doença/genética , Estudo de Associação Genômica Ampla/estatística & dados numéricos , Herança Multifatorial/genética , Humanos , Fenótipo , Fatores de RiscoRESUMO
Making good decisions requires updating beliefs according to new evidence. This is a dynamical process that is prone to biases: in some cases, beliefs become entrenched and resistant to new evidence (leading to primacy effects), while in other cases, beliefs fade over time and rely primarily on later evidence (leading to recency effects). How and why either type of bias dominates in a given context is an important open question. Here, we study this question in classic perceptual decision-making tasks, where, puzzlingly, previous empirical studies differ in the kinds of biases they observe, ranging from primacy to recency, despite seemingly equivalent tasks. We present a new model, based on hierarchical approximate inference and derived from normative principles, that not only explains both primacy and recency effects in existing studies, but also predicts how the type of bias should depend on the statistics of stimuli in a given task. We verify this prediction in a novel visual discrimination task with human observers, finding that each observer's temporal bias changed as the result of changing the key stimulus statistics identified by our model. The key dynamic that leads to a primacy bias in our model is an overweighting of new sensory information that agrees with the observer's existing belief-a type of 'confirmation bias'. By fitting an extended drift-diffusion model to our data we rule out an alternative explanation for primacy effects due to bounded integration. Taken together, our results resolve a major discrepancy among existing perceptual decision-making studies, and suggest that a key source of bias in human decision-making is approximate hierarchical inference.
Assuntos
Viés , Tomada de Decisões , Percepção , Humanos , Modelos PsicológicosRESUMO
The forage maturation hypothesis (FMH) states that energy intake for ungulates is maximised when forage biomass is at intermediate levels. Nevertheless, metabolic allometry and different digestive systems suggest that resource selection should vary across ungulate species. By combining GPS relocations with remotely sensed data on forage characteristics and surface water, we quantified the effect of body size and digestive system in determining movements of 30 populations of hindgut fermenters (equids) and ruminants across biomes. Selection for intermediate forage biomass was negatively related to body size, regardless of digestive system. Selection for proximity to surface water was stronger for equids relative to ruminants, regardless of body size. To be more generalisable, we suggest that the FMH explicitly incorporate contingencies in body size and digestive system, with small-bodied ruminants selecting more strongly for potential energy intake, and hindgut fermenters selecting more strongly for surface water.
Assuntos
Sistema Digestório , Ruminantes , Animais , Tamanho CorporalRESUMO
While the tendency to return to previously visited locations-termed 'site fidelity'-is common in animals, the cause of this behaviour is not well understood. One hypothesis is that site fidelity is shaped by an animal's environment, such that animals living in landscapes with predictable resources have stronger site fidelity. Site fidelity may also be conditional on the success of animals' recent visits to that location, and it may become stronger with age as the animal accumulates experience in their landscape. Finally, differences between species, such as the way memory shapes site attractiveness, may interact with environmental drivers to modulate the strength of site fidelity. We compared inter-year site fidelity in 669 individuals across eight ungulate species fitted with GPS collars and occupying a range of environmental conditions in North America and Africa. We used a distance-based index of site fidelity and tested hypothesized drivers of site fidelity using linear mixed effects models, while accounting for variation in annual range size. Mule deer Odocoileus hemionus and moose Alces alces exhibited relatively strong site fidelity, while wildebeest Connochaetes taurinus and barren-ground caribou Rangifer tarandus granti had relatively weak fidelity. Site fidelity was strongest in predictable landscapes where vegetative greening occurred at regular intervals over time (i.e. high temporal contingency). Species differed in their response to spatial heterogeneity in greenness (i.e. spatial constancy). Site fidelity varied seasonally in some species, but remained constant over time in others. Elk employed a 'win-stay, lose-switch' strategy, in which successful resource tracking in the springtime resulted in strong site fidelity the following spring. Site fidelity did not vary with age in any species tested. Our results provide support for the environmental hypothesis, particularly that regularity in vegetative phenology shapes the strength of site fidelity at the inter-annual scale. Large unexplained differences in site fidelity suggest that other factors, possibly species-specific differences in attraction to known sites, contribute to variation in the expression of this behaviour. Understanding drivers of variation in site fidelity across groups of organisms living in different environments provides important behavioural context for predicting how animals will respond to environmental change.
Assuntos
Cervos , Rena , África , Animais , Ecossistema , América do NorteRESUMO
Sensory information is encoded by populations of cortical neurons. Yet, it is unknown how this information is used for even simple perceptual choices such as discriminating orientation. To determine the computation underlying this perceptual choice, we took advantage of the robust visual adaptation in mouse primary visual cortex (V1). We first designed a stimulus paradigm in which we could vary the degree of neuronal adaptation measured in V1 during an orientation discrimination task. We then determined how adaptation affects task performance for mice of both sexes and tested which neuronal computations are most consistent with the behavioral results given the adapted population responses in V1. Despite increasing the reliability of the population representation of orientation among neurons, and improving the ability of a variety of optimal decoders to discriminate target from distractor orientations, adaptation increases animals' behavioral thresholds. Decoding the animals' choice from neuronal activity revealed that this unexpected effect on behavior could be explained by an overreliance of the perceptual choice circuit on target preferring neurons and a failure to appropriately discount the activity of neurons that prefer the distractor. Consistent with this all-positive computation, we find that animals' task performance is susceptible to subtle perturbations of distractor orientation and optogenetic suppression of neuronal activity in V1. This suggests that to solve this task the circuit has adopted a suboptimal and task-specific computation that discards important task-related information.SIGNIFICANCE STATEMENT A major goal in systems neuroscience is to understand how sensory signals are used to guide behavior. This requires determining what information in sensory cortical areas is used, and how it is combined, by downstream perceptual choice circuits. Here we demonstrate that when performing a go/no-go orientation discrimination task, mice suboptimally integrate signals from orientation tuned visual cortical neurons. While they appropriately positively weight target-preferring neurons, they fail to negatively weight distractor-preferring neurons. We propose that this all-positive computation may be adopted because of its simple learning rules and faster processing, and may be a common approach to perceptual decision-making when task conditions allow.
Assuntos
Adaptação Fisiológica , Comportamento de Escolha/fisiologia , Discriminação Psicológica/fisiologia , Neurônios/fisiologia , Reconhecimento Visual de Modelos/fisiologia , Córtex Visual/fisiologia , Animais , Feminino , Masculino , Camundongos Endogâmicos C57BL , Modelos Neurológicos , Optogenética , Desempenho Psicomotor/fisiologiaRESUMO
We use Mellin-transform techniques to derive generalized expressions for the piston-removed and piston-and-tilt-removed anisoplanatic error in non-Kolmogorov turbulence with a finite outer scale. We use these expressions to investigate the behavior of the anisoplanatic error when imaging over long horizontal paths where the angular extent of the scene is often many times the isoplanatic angle. By evaluating these expressions, we first find that in many cases, the anisoplanatic error saturates to a value less than 1rad2. Next, as power law increases, the contributions due to piston and tilt dominate the anisoplanatic error expression. Last, the size of the outer scale contributes primarily to the piston and tilt terms. Together, these behaviors imply that when piston and tilt are removed, anisoplanatism is reduced by as much as 60%.
RESUMO
BACKGROUND: The gut microbiota composition is known to be influenced by a myriad of factors including the host genetic profile and a number of environmental influences. Here, we focus on the environmental influence of cohabitation on the gut microbiota as well as whether these environmentally influenced microorganisms are associated with cardiometabolic and inflammatory burden. We perform this by investigating the gut microbiota composition of various groups of related individuals including cohabitating monozygotic (MZ) twin pairs, non-cohabitating MZ twin pairs and spouse pairs. RESULTS: A stronger correlation between alpha diversity was found in cohabitating MZ twins (45 pairs, r = 0.64, p = 2.21 × 10- 06) than in non-cohabitating MZ twin pairs (121 pairs, r = 0.42, p = 1.35 × 10- 06). Although the correlation of alpha diversity did not attain significance between spouse pairs (42 pairs, r = 0.23, p = 0.15), the correlation was still higher than those in the 209 unrelated pairs (r = - 0.015, p = 0.832). Bray-Curtis (BC) dissimilarity metrics showed cohabitating MZ twin pairs had the most similar gut microbiota communities which were more similar than the BC values of non-cohabitating MZ twins (empirical p-value = 0.0103), cohabitating spouses (empirical p-value = 0.0194), and pairs of unrelated non-cohabitating individuals (empirical p-value< 0.00001). There was also a significant difference between the BC measures from the spouse pairs and those from the unrelated non-cohabitating individuals (empirical p-value< 0.00001). Intraclass correlation coefficients were calculated between the various groups of interest and the results indicate the presence of OTUs with an environmental influence and one OTU that appeared to demonstrate genetic influences. One of the OTUs (Otu0190) was observed to have a significant association with both the cardiometabolic and inflammatory burden scores (p's < 0.05). CONCLUSIONS: Through the comparison of the microbiota contents of MZ twins with varying cohabitation status and spousal pairs, we showed evidence of environmentally influenced OTUs, one of which had a significant association with cardiometabolic and inflammatory burden scores.
Assuntos
Bactérias/classificação , Biomarcadores/análise , Cônjuges , Gêmeos Monozigóticos , Adulto , Idoso , Bactérias/genética , Bactérias/isolamento & purificação , Doenças Cardiovasculares/metabolismo , Feminino , Microbioma Gastrointestinal , Humanos , Inflamação/metabolismo , Masculino , Pessoa de Meia-Idade , Países Baixos , Filogenia , Análise de Sequência de DNA , Adulto JovemRESUMO
The availability and quality of forage on the landscape constitute the foodscape within which animals make behavioral decisions to acquire food. Novel changes to the foodscape, such as human disturbance, can alter behavioral decisions that favor avoidance of perceived risk over food acquisition. Although behavioral changes and population declines often coincide with the introduction of human disturbance, the link(s) between behavior and population trajectory are difficult to elucidate. To identify a pathway by which human disturbance may affect ungulate populations, we tested the Behaviorally Mediated Forage-Loss Hypothesis, wherein behavioral avoidance is predicted to reduce use of available forage adjacent to disturbance. We used GPS collar data collected from migratory mule deer (Odocoileus hemionus) to evaluate habitat selection, movement patterns, and time-budgeting behavior in response to varying levels of forage availability and human disturbance in three different populations exposed to a gradient of energy development. Subsequently, we linked animal behavior with measured use of forage relative to human disturbance, forage availability, and quality. Mule deer avoided human disturbance at both home range and winter range scales, but showed negligible differences in vigilance rates at the site level. Use of the primary winter forage, sagebrush (Artemisia tridentata), increased as production of new annual growth increased but use decreased with proximity to disturbance. Consequently, avoidance of human disturbance prompted loss of otherwise available forage, resulting in indirect habitat loss that was 4.6-times greater than direct habitat loss from roads, well pads, and other infrastructure. The multiplicative effects of indirect habitat loss, as mediated by behavior, impaired use of the foodscape by reducing the amount of available forage for mule deer, a consequence of which may be winter ranges that support fewer animals than they did before development.
Assuntos
Cervos , Animais , Ecossistema , Comportamento de Retorno ao Território Vital , Humanos , Estações do AnoRESUMO
The aim of the Avera Twin Register (ATR) is to establish a prospective longitudinal repository of twins, multiples, siblings and family members' biological samples to study environmental and genetic influences on health and disease. Also, it is our intention to contribute to international genome-wide association study (GWAS) twin consortia when appropriate sample size is achieved within the ATR. The ATR is young compared with existing registers and continues to collect a longitudinal repository of biological specimens, survey data and health information. Data and biological specimens were originally collected via face-to-face appointments or the postal department and consisted of paper-informed consents and questionnaires. Enrollment of the ATR began on May 18, 2016 and is located in Sioux Falls, South Dakota, a rural and frontier area in the Central United States with a regional population of approximately 880,000. The original target area for the ATR was South Dakota and the four surrounding states: Minnesota, Iowa, North Dakota and Nebraska. The ATR has found a need to expand that area based on twin and multiple siblings who live in various areas surrounding these states. A description of the state of the ATR today and its transition to online data collection and informed consent will be presented. The ATR collects longitudinal data on lifestyle, including diet and activity levels, aging, plus complex traits and diseases. All twins and multiples participating in the ATR are genotyped on the Illumina Global Screening Array and receive zygosity results.
Assuntos
Genética Humana , Sistema de Registros , Gêmeos Dizigóticos/genética , Humanos , Estudos em Gêmeos como Assunto , Gêmeos MonozigóticosRESUMO
Twin registries often take part in large collaborative projects and are major contributors to genome-wide association (GWA) meta-analysis studies. In this article, we describe genotyping of twin-family populations from Australia, the Midwestern USA (Avera Twin Register), the Netherlands (Netherlands Twin Register), as well as a sample of mothers of twins from Nigeria to assess the extent, if any, of genetic differences between them. Genotyping in all cohorts was done using a custom-designed Illumina Global Screening Array (GSA), optimized to improve imputation quality for population-specific GWA studies. We investigated the degree of genetic similarity between the populations using several measures of population variation with genotype data generated from the GSA. Visualization of principal component analysis (PCA) revealed that the Australian, Dutch and Midwestern American populations exhibit negligible interpopulation stratification when compared to each other, to a reference European population and to globally distant populations. Estimations of fixation indices (FST values) between the Australian, Midwestern American and Netherlands populations suggest minimal genetic differentiation compared to the estimates between each population and a genetically distinct cohort (i.e., samples from Nigeria genotyped on GSA). Thus, results from this study demonstrate that genotype data from the Australian, Dutch and Midwestern American twin-family populations can be reasonably combined for joint-genetic analysis.
Assuntos
Doenças em Gêmeos/genética , Estudo de Associação Genômica Ampla , Técnicas de Genotipagem , Gêmeos/genética , Austrália , Genética Populacional , Genótipo , Humanos , Meio-Oeste dos Estados Unidos , Mães , Países Baixos , Nigéria , Polimorfismo de Nucleotídeo Único , Sistema de RegistrosRESUMO
Here we provide an update of the 2013 report on the Nigerian Twin and Sibling Registry (NTSR). The major aim of the NTSR is to understand genetic and environmental influences and their interplay in psychological and mental health development in Nigerian children and adolescents. Africans have the highest twin birth rates among all human populations, and Nigeria is the most populous country in Africa. Due to its combination of large population and high twin birth rates, Nigeria has one of the largest twin populations in the world. In this article, we provide current updates on the NTSR samples recruited, recruitment procedures, zygosity assessment and findings emerging from the NTSR.
Assuntos
Doenças em Gêmeos/epidemiologia , Saúde Mental , Sistema de Registros/estatística & dados numéricos , Irmãos , Gêmeos Dizigóticos/genética , Gêmeos Monozigóticos/genética , Adolescente , Adulto , Coeficiente de Natalidade , Criança , Pré-Escolar , Doenças em Gêmeos/genética , Doenças em Gêmeos/psicologia , Feminino , Seguimentos , Humanos , Masculino , Nigéria/epidemiologia , Adulto JovemRESUMO
Experiments that study neural encoding of stimuli at the level of individual neurons typically choose a small set of features present in the world-contrast and luminance for vision, pitch and intensity for sound-and assemble a stimulus set that systematically varies along these dimensions. Subsequent analysis of neural responses to these stimuli typically focuses on regression models, with experimenter-controlled features as predictors and spike counts or firing rates as responses. Unfortunately, this approach requires knowledge in advance about the relevant features coded by a given population of neurons. For domains as complex as social interaction or natural movement, however, the relevant feature space is poorly understood, and an arbitrary a priori choice of features may give rise to confirmation bias. Here, we present a Bayesian model for exploratory data analysis that is capable of automatically identifying the features present in unstructured stimuli based solely on neuronal responses. Our approach is unique within the class of latent state space models of neural activity in that it assumes that firing rates of neurons are sensitive to multiple discrete time-varying features tied to the stimulus, each of which has Markov (or semi-Markov) dynamics. That is, we are modeling neural activity as driven by multiple simultaneous stimulus features rather than intrinsic neural dynamics. We derive a fast variational Bayesian inference algorithm and show that it correctly recovers hidden features in synthetic data, as well as ground-truth stimulus features in a prototypical neural dataset. To demonstrate the utility of the algorithm, we also apply it to cluster neural responses and demonstrate successful recovery of features corresponding to monkeys and faces in the image set.
Assuntos
Potenciais de Ação/fisiologia , Modelos Neurológicos , Neurônios/fisiologia , Algoritmos , Animais , Teorema de Bayes , Análise por Conglomerados , Biologia Computacional , Macaca , Estimulação LuminosaRESUMO
OBJECTIVE: The human gut microbiota has been demonstrated to be associated with a number of host phenotypes, including obesity and a number of obesity-associated phenotypes. This study is aimed at further understanding and describing the relationship between the gut microbiota and obesity-associated measurements obtained from human participants. SUBJECTS/METHODS: Here, we utilize genetically informative study designs, including a four-corners design (extremes of genetic risk for BMI and of observed BMI; N = 50) and the BMI monozygotic (MZ) discordant twin pair design (N = 30), in order to help delineate the role of host genetics and the gut microbiota in the development of obesity. RESULTS: Our results highlight a negative association between BMI and alpha diversity of the gut microbiota. The low genetic risk/high BMI group of individuals had a lower gut microbiota alpha diversity when compared to the other three groups. Although the difference in alpha diversity between the lean and heavy groups of the BMI-discordant MZ twin design did not achieve significance, this difference was observed to be in the expected direction, with the heavier participants having a lower average alpha diversity. We have also identified nine OTUs observed to be associated with either a leaner or heavier phenotype, with enrichment for OTUs classified to the Ruminococcaceae and Oxalobacteraceae taxonomic families. CONCLUSION: Our study presents evidence of a relationship between BMI and alpha diversity of the gut microbiota. In addition to these findings, a number of OTUs were found to be significantly associated with host BMI. These findings may highlight separate subtypes of obesity, one driven by genetic factors, the other more heavily influenced by environmental factors.