RESUMO
Wastewater-based surveillance (WBS) is an important epidemiological and public health tool for tracking pathogens across the scale of a building, neighbourhood, city, or region. WBS gained widespread adoption globally during the SARS-CoV-2 pandemic for estimating community infection levels by qPCR. Sequencing pathogen genes or genomes from wastewater adds information about pathogen genetic diversity, which can be used to identify viral lineages (including variants of concern) that are circulating in a local population. Capturing the genetic diversity by WBS sequencing is not trivial, as wastewater samples often contain a diverse mixture of viral lineages with real mutations and sequencing errors, which must be deconvoluted computationally from short sequencing reads. In this study we assess nine different computational tools that have recently been developed to address this challenge. We simulated 100 wastewater sequence samples consisting of SARS-CoV-2 BA.1, BA.2, and Delta lineages, in various mixtures, as well as a Delta-Omicron recombinant and a synthetic 'novel' lineage. Most tools performed well in identifying the true lineages present and estimating their relative abundances and were generally robust to variation in sequencing depth and read length. While many tools identified lineages present down to 1â% frequency, results were more reliable above a 5â% threshold. The presence of an unknown synthetic lineage, which represents an unclassified SARS-CoV-2 lineage, increases the error in relative abundance estimates of other lineages, but the magnitude of this effect was small for most tools. The tools also varied in how they labelled novel synthetic lineages and recombinants. While our simulated dataset represents just one of many possible use cases for these methods, we hope it helps users understand potential sources of error or bias in wastewater sequencing analysis and to appreciate the commonalities and differences across methods.
Assuntos
COVID-19 , Genoma Viral , SARS-CoV-2 , Águas Residuárias , Águas Residuárias/virologia , SARS-CoV-2/genética , SARS-CoV-2/classificação , COVID-19/virologia , COVID-19/epidemiologia , Humanos , Biologia Computacional/métodos , Genômica/métodos , Vigilância Epidemiológica Baseada em Águas Residuárias , FilogeniaRESUMO
Research on the occurrence and the final size of wildland fires typically models these two events as two separate processes. In this work, we develop and apply a compound process framework for jointly modelling the frequency and the severity of wildland fires. Separate modelling structures for the frequency and the size of fires are linked through a shared random effect. This allows us to fit an appropriate model for frequency and an appropriate model for size of fires while still having a method to estimate the direction and strength of the relationship (e.g., whether days with more fires are associated with days with large fires). The joint estimation of this random effect shares information between the models without assuming a causal structure. We explore spatial and temporal autocorrelation of the random effects to identify additional variation not explained by the inclusion of weather related covariates. The dependence between frequency and size of lightning-caused fires is found to be negative, indicating that an increase in the number of expected fires is associated with a decrease in the expected size of those fires, possibly due to the rainy conditions necessary for an increase in lightning. Person-caused fires were found to be positively dependent, possibly due to dry weather increasing human activity as well as the amount of dry few. For a test for independence, we perform a power study and find that simply checking whether zero is in the credible interval of the posterior of the linking parameter is as powerful as more complicated tests.