Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 115
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell ; 83(23): 4318-4333.e10, 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-37989319

RESUMO

RNA unwinding by DExH-type helicases underlies most RNA metabolism and function. It remains unresolved if and how the basic unwinding reaction of helicases is regulated by auxiliary domains. We explored the interplay between the RecA and auxiliary domains of the RNA helicase maleless (MLE) from Drosophila using structural and functional studies. We discovered that MLE exists in a dsRNA-bound open conformation and that the auxiliary dsRBD2 domain aligns the substrate RNA with the accessible helicase tunnel. In an ATP-dependent manner, dsRBD2 associates with the helicase module, leading to tunnel closure around ssRNA. Furthermore, our structures provide a rationale for blunt-ended dsRNA unwinding and 3'-5' translocation by MLE. Structure-based MLE mutations confirm the functional relevance of our model for RNA unwinding. Our findings contribute to our understanding of the fundamental mechanics of auxiliary domains in DExH helicase MLE, which serves as a model for its human ortholog and potential therapeutic target, DHX9/RHA.


Assuntos
Proteínas de Drosophila , RNA Helicases , Animais , Humanos , Proteínas Cromossômicas não Histona/genética , DNA Helicases/genética , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Homeostase , RNA/metabolismo , RNA Helicases/metabolismo , RNA de Cadeia Dupla/genética , Fatores de Transcrição/metabolismo
2.
Nature ; 619(7969): 385-393, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37407816

RESUMO

The basic helix-loop-helix (bHLH) family of transcription factors recognizes DNA motifs known as E-boxes (CANNTG) and includes 108 members1. Here we investigate how chromatinized E-boxes are engaged by two structurally diverse bHLH proteins: the proto-oncogene MYC-MAX and the circadian transcription factor CLOCK-BMAL1 (refs. 2,3). Both transcription factors bind to E-boxes preferentially near the nucleosomal entry-exit sites. Structural studies with engineered or native nucleosome sequences show that MYC-MAX or CLOCK-BMAL1 triggers the release of DNA from histones to gain access. Atop the H2A-H2B acidic patch4, the CLOCK-BMAL1 Per-Arnt-Sim (PAS) dimerization domains engage the histone octamer disc. Binding of tandem E-boxes5-7 at endogenous DNA sequences occurs through direct interactions between two CLOCK-BMAL1 protomers and histones and is important for circadian cycling. At internal E-boxes, the MYC-MAX leucine zipper can also interact with histones H2B and H3, and its binding is indirectly enhanced by OCT4 elsewhere on the nucleosome. The nucleosomal E-box position and the type of bHLH dimerization domain jointly determine the histone contact, the affinity and the degree of competition and cooperativity with other nucleosome-bound factors.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos , DNA , Histonas , Fatores de Transcrição ARNTL/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , DNA/genética , DNA/metabolismo , Sequências Hélice-Alça-Hélice/genética , Histonas/química , Histonas/metabolismo , Nucleossomos/química , Nucleossomos/genética , Nucleossomos/metabolismo , Ligação Proteica , Proteínas CLOCK/química , Proteínas CLOCK/metabolismo , Proteínas Proto-Oncogênicas c-myc/química , Proteínas Proto-Oncogênicas c-myc/metabolismo , Regulação Alostérica , Zíper de Leucina , Fator 3 de Transcrição de Octâmero/metabolismo , Multimerização Proteica
3.
Genes Dev ; 35(13-14): 1055-1070, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34140353

RESUMO

The dosage compensation complex (DCC) of Drosophila identifies its X-chromosomal binding sites with exquisite selectivity. The principles that assure this vital targeting are known from the D. melanogaster model: DCC-intrinsic specificity of DNA binding, cooperativity with the CLAMP protein, and noncoding roX2 RNA transcribed from the X chromosome. We found that in D. virilis, a species separated from melanogaster by 40 million years of evolution, all principles are active but contribute differently to X specificity. In melanogaster, the DCC subunit MSL2 evolved intrinsic DNA-binding selectivity for rare PionX sites, which mark the X chromosome. In virilis, PionX motifs are abundant and not X-enriched. Accordingly, MSL2 lacks specific recognition. Here, roX2 RNA plays a more instructive role, counteracting a nonproductive interaction of CLAMP and modulating DCC binding selectivity. Remarkably, roX2 triggers a stable chromatin binding mode characteristic of DCC. Evidently, X-specific regulation is achieved by divergent evolution of protein, DNA, and RNA components.


Assuntos
Proteínas de Drosophila , Drosophila melanogaster , Animais , Mecanismo Genético de Compensação de Dose , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Cromossomos Sexuais/metabolismo , Fatores de Transcrição/metabolismo , Cromossomo X/genética , Cromossomo X/metabolismo
4.
Mol Cell ; 72(4): 661-672.e4, 2018 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-30392927

RESUMO

Regular successions of positioned nucleosomes, or phased nucleosome arrays (PNAs), are predominantly known from transcriptional start sites (TSSs). It is unclear whether PNAs occur elsewhere in the genome. To generate a comprehensive inventory of PNAs for Drosophila, we applied spectral analysis to nucleosome maps and identified thousands of PNAs throughout the genome. About half of them are not near TSSs and are strongly enriched for an uncharacterized sequence motif. Through genome-wide reconstitution of physiological chromatin in Drosophila embryo extracts, we uncovered the molecular basis of PNA formation. We identified Phaser, an unstudied zinc finger protein that positions nucleosomes flanking the motif. It also revealed how the global activity of the chromatin remodelers CHRAC/ACF, together with local barrier elements, generates islands of regular phasing throughout the genome. Our work demonstrates the potential of chromatin assembly by embryo extracts as a powerful tool to reconstitute chromatin features on a global scale in vitro.


Assuntos
Montagem e Desmontagem da Cromatina/genética , Drosophila melanogaster/genética , Nucleossomos/genética , Animais , Cromatina/fisiologia , Montagem e Desmontagem da Cromatina/fisiologia , Mapeamento Cromossômico/métodos , Drosophila/genética , Histonas , Camundongos , Nucleossomos/fisiologia , Sítio de Iniciação de Transcrição/fisiologia
5.
Nucleic Acids Res ; 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38813825

RESUMO

Methylation of histone H3 at lysine 36 (H3K36me3) marks active chromatin. The mark is interpreted by epigenetic readers that assist transcription and safeguard the integrity of the chromatin fiber. The chromodomain protein MSL3 binds H3K36me3 to target X-chromosomal genes in male Drosophila for dosage compensation. The PWWP-domain protein JASPer recruits the JIL1 kinase to active chromatin on all chromosomes. Unexpectedly, depletion of K36me3 had variable, locus-specific effects on the interactions of those readers. This observation motivated a systematic and comprehensive study of K36 methylation in a defined cellular model. Contrasting prevailing models, we found that K36me1, K36me2 and K36me3 each contribute to distinct chromatin states. A gene-centric view of the changing K36 methylation landscape upon depletion of the three methyltransferases Set2, NSD and Ash1 revealed local, context-specific methylation signatures. Set2 catalyzes K36me3 predominantly at transcriptionally active euchromatin. NSD places K36me2/3 at defined loci within pericentric heterochromatin and on weakly transcribed euchromatic genes. Ash1 deposits K36me1 at regions with enhancer signatures. The genome-wide mapping of MSL3 and JASPer suggested that they bind K36me2 in addition to K36me3, which was confirmed by direct affinity measurement. This dual specificity attracts the readers to a broader range of chromosomal locations and increases the robustness of their actions.

6.
Nucleic Acids Res ; 52(9): 4889-4905, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38407474

RESUMO

Acetylation of lysine 16 of histone H4 (H4K16ac) stands out among the histone modifications, because it decompacts the chromatin fiber. The metazoan acetyltransferase MOF (KAT8) regulates transcription through H4K16 acetylation. Antibody-based studies had yielded inconclusive results about the selectivity of MOF to acetylate the H4 N-terminus. We used targeted mass spectrometry to examine the activity of MOF in the male-specific lethal core (4-MSL) complex on nucleosome array substrates. This complex is part of the Dosage Compensation Complex (DCC) that activates X-chromosomal genes in male Drosophila. During short reaction times, MOF acetylated H4K16 efficiently and with excellent selectivity. Upon longer incubation, the enzyme progressively acetylated lysines 12, 8 and 5, leading to a mixture of oligo-acetylated H4. Mathematical modeling suggests that MOF recognizes and acetylates H4K16 with high selectivity, but remains substrate-bound and continues to acetylate more N-terminal H4 lysines in a processive manner. The 4-MSL complex lacks non-coding roX RNA, a critical component of the DCC. Remarkably, addition of RNA to the reaction non-specifically suppressed H4 oligo-acetylation in favor of specific H4K16 acetylation. Because RNA destabilizes the MSL-nucleosome interaction in vitro we speculate that RNA accelerates enzyme-substrate turn-over in vivo, thus limiting the processivity of MOF, thereby increasing specific H4K16 acetylation.


Assuntos
Proteínas de Drosophila , Histona Acetiltransferases , Código das Histonas , Animais , Masculino , Acetilação , Drosophila melanogaster/metabolismo , Drosophila melanogaster/genética , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Histona Acetiltransferases/metabolismo , Histona Acetiltransferases/genética , Histonas/metabolismo , Lisina/metabolismo , Proteínas Nucleares , Nucleossomos/metabolismo , Especificidade por Substrato , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética
7.
Nucleic Acids Res ; 51(17): 9039-9054, 2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37602401

RESUMO

MSL2, the DNA-binding subunit of the Drosophila dosage compensation complex, cooperates with the ubiquitous protein CLAMP to bind MSL recognition elements (MREs) on the X chromosome. We explore the nature of the cooperative binding to these GA-rich, composite sequence elements in reconstituted naïve embryonic chromatin. We found that the cooperativity requires physical interaction between both proteins. Remarkably, disruption of this interaction does not lead to indirect, nucleosome-mediated cooperativity as expected, but to competition. The protein interaction apparently not only increases the affinity for composite binding sites, but also locks both proteins in a defined dimeric state that prevents competition. High Affinity Sites of MSL2 on the X chromosome contain variable numbers of MREs. We find that the cooperation between MSL2/CLAMP is not influenced by MRE clustering or arrangement, but happens largely at the level of individual MREs. The sites where MSL2/CLAMP bind strongly in vitro locate to all chromosomes and show little overlap to an expanded set of X-chromosomal MSL2 in vivo binding sites generated by CUT&RUN. Apparently, the intrinsic MSL2/CLAMP cooperativity is limited to a small selection of potential sites in vivo. This restriction must be due to components missing in our reconstitution, such as roX2 lncRNA.


Assuntos
Proteínas de Drosophila , Fatores de Transcrição , Animais , Sítios de Ligação , Proteínas de Ligação a DNA/metabolismo , Mecanismo Genético de Compensação de Dose , Drosophila/genética , Drosophila/metabolismo , Drosophila melanogaster/genética , Proteínas de Drosophila/metabolismo , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Cromossomo X/genética
8.
Biochem Soc Trans ; 52(1): 423-429, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38329186

RESUMO

Extracts from Drosophila preblastoderm embryos (DREX) form the basis of a powerful in vitro chromatin reconstitution system that assembles entire genomes into complex chromatin with physiological nucleosome spacing and polymer condensation. As the zygotic genome has not yet been activated in preblastoderm embryos, the reconstitution extract lacks endogenous transcription factors (TFs) and the RNA polymerase machinery. At the same time, it contains high levels of ATP-dependent nucleosome sliding enzymes that render the reconstituted chromatin dynamic. The naïve chromatin can be used to determine the intrinsic DNA binding properties of exogenous, usually recombinant TFs (or DNA binding proteins in general) in a complex chromatin context. Recent applications of the system include the description of cooperation and competition of Drosophila pioneer TFs for composite binding sites, and the characterization of nucleosome interactions of mammalian pioneer TFs in the heterologous system.


Assuntos
Cromatina , Fatores de Transcrição , Animais , Fatores de Transcrição/metabolismo , Nucleossomos , Drosophila/metabolismo , Genômica , Mamíferos/metabolismo
9.
Mol Cell ; 57(3): 559-71, 2015 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-25578876

RESUMO

Regulation of histone acetylation is fundamental to the utilization of eukaryotic genomes in chromatin. Aberrant acetylation contributes to disease and can be clinically combated by inhibiting the responsible enzymes. Our knowledge of the histone acetylation system is patchy because we so far lacked the methodology to describe acetylation patterns and their genesis by integrated enzyme activities. We devised a generally applicable, mass spectrometry-based strategy to precisely and accurately quantify combinatorial modification motifs. This was applied to generate a comprehensive inventory of acetylation motifs on histones H3 and H4 in Drosophila cells. Systematic depletion of known or suspected acetyltransferases and deacetylases revealed specific alterations of histone acetylation signatures, established enzyme-substrate relationships, and unveiled an extensive crosstalk between neighboring modifications. Unexpectedly, overall histone acetylation levels remained remarkably constant upon depletion of individual acetyltransferases. Conceivably, the acetylation level is adjusted to maintain the global charge neutralization of chromatin and the stability of nuclei.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/enzimologia , Histona Acetiltransferases/metabolismo , Histona Desacetilases/metabolismo , Histonas/metabolismo , Acetilação , Animais , Linhagem Celular , Humanos , Lisina/metabolismo , Espectrometria de Massas , Metilação , Proteômica
10.
Mol Cell ; 60(3): 487-99, 2015 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-26545078

RESUMO

The MLE helicase remodels the roX lncRNAs, enabling the lncRNA-mediated assembly of the Drosophila dosage compensation complex. We identified a stable MLE core comprising the DExH helicase module and two auxiliary domains: a dsRBD and an OB-like fold. MLEcore is an unusual DExH helicase that can unwind blunt-ended RNA duplexes and has specificity for uridine nucleotides. We determined the 2.1 Å resolution structure of MLEcore bound to a U10 RNA and ADP-AlF4. The OB-like and dsRBD folds bind the DExH module and contribute to form the entrance of the helicase channel. Four uridine nucleotides engage in base-specific interactions, rationalizing the conservation of uridine-rich sequences in critical roX substrates. roX2 binding is orchestrated by MLE's auxiliary domains, which is prerequisite for MLE localization to the male X chromosome. The structure visualizes a transition-state mimic of the reaction and suggests how eukaryotic DEAH/RHA helicases couple ATP hydrolysis to RNA translocation.


Assuntos
Trifosfato de Adenosina/química , Proteínas Cromossômicas não Histona/química , DNA Helicases/química , Proteínas de Drosophila/química , RNA Helicases/química , RNA/química , Fatores de Transcrição/química , Trifosfato de Adenosina/genética , Trifosfato de Adenosina/metabolismo , Animais , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , DNA Helicases/genética , DNA Helicases/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Masculino , Estrutura Terciária de Proteína , RNA/genética , RNA/metabolismo , RNA Helicases/genética , RNA Helicases/metabolismo , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Relação Estrutura-Atividade , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Cromossomo X/química , Cromossomo X/genética , Cromossomo X/metabolismo
11.
Nucleic Acids Res ; 49(13): 7602-7617, 2021 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-34181732

RESUMO

Metazoan transcription factors distinguish their response elements from a large excess of similar sequences. We explored underlying principles of DNA shape read-out and factor cooperativity in chromatin using a unique experimental system. We reconstituted chromatin on Drosophila genomes in extracts of preblastoderm embryos, mimicking the naïve state of the zygotic genome prior to developmental transcription activation. We then compared the intrinsic binding specificities of three recombinant transcription factors, alone and in combination, with GA-rich recognition sequences genome-wide. For MSL2, all functional elements reside on the X chromosome, allowing to distinguish physiological elements from non-functional 'decoy' sites. The physiological binding profile of MSL2 is approximated through interaction with other factors: cooperativity with CLAMP and competition with GAF, which sculpts the profile by occluding non-functional sites. An extended DNA shape signature is differentially read out in chromatin. Our results reveal novel aspects of target selection in a complex chromatin environment.


Assuntos
Cromatina/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/metabolismo , Fatores de Transcrição/metabolismo , Animais , Sítios de Ligação , Ligação Competitiva , Sistema Livre de Células , DNA/química , DNA/metabolismo , Drosophila/embriologia , Drosophila/genética , Genoma de Inseto , Genômica , Histonas/metabolismo , Masculino , Ligação Proteica , Cromossomo X
12.
Nature ; 537(7619): 244-248, 2016 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-27580037

RESUMO

The rules defining which small fraction of related DNA sequences can be selectively bound by a transcription factor are poorly understood. One of the most challenging tasks in DNA recognition is posed by dosage compensation systems that require the distinction between sex chromosomes and autosomes. In Drosophila melanogaster, the male-specific lethal dosage compensation complex (MSL-DCC) doubles the level of transcription from the single male X chromosome, but the nature of this selectivity is not known. Previous efforts to identify X-chromosome-specific target sequences were unsuccessful as the identified MSL recognition elements lacked discriminative power. Therefore, additional determinants such as co-factors, chromatin features, RNA and chromosome conformation have been proposed to refine targeting further. Here, using an in vitro genome-wide DNA binding assay, we show that recognition of the X chromosome is an intrinsic feature of the MSL-DCC. MSL2, the male-specific organizer of the complex, uses two distinct DNA interaction surfaces-the CXC and proline/basic-residue-rich domains-to identify complex DNA elements on the X chromosome. Specificity is provided by the CXC domain, which binds a novel motif defined by DNA sequence and shape. This motif characterizes a subclass of MSL2-binding sites, which we name PionX (pioneering sites on the X) as they appeared early during the recent evolution of an X chromosome in D. miranda and are the first chromosomal sites to be bound during de novo MSL-DCC assembly. Our data provide the first, to our knowledge, documented molecular mechanism through which the dosage compensation machinery distinguishes the X chromosome from an autosome. They highlight fundamental principles in the recognition of complex DNA elements by protein that will have a strong impact on many aspects of chromosome biology.


Assuntos
Mecanismo Genético de Compensação de Dose/genética , Drosophila melanogaster/genética , Complexos Multiproteicos/metabolismo , Sequências Reguladoras de Ácido Nucleico/genética , Cromossomo X/genética , Motivos de Aminoácidos , Animais , Sequência de Bases , Sítios de Ligação , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/metabolismo , Evolução Molecular , Feminino , Genoma de Inseto/genética , Masculino , Complexos Multiproteicos/química , Proteínas Nucleares/metabolismo , Conformação de Ácido Nucleico , Motivos de Nucleotídeos , Domínios Proteicos , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Especificidade por Substrato , Fatores de Transcrição/metabolismo , Cromossomo X/metabolismo
13.
Nucleic Acids Res ; 48(13): 7483-7501, 2020 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-32510132

RESUMO

The MLE DExH helicase and the roX lncRNAs are essential components of the chromatin modifying Dosage Compensation Complex (DCC) in Drosophila. To explore the mechanism of ribonucleoprotein complex assembly, we developed vitRIP, an unbiased, transcriptome-wide in vitro assay that reveals RNA binding specificity. We found that MLE has intrinsic specificity for U-/A-rich sequences and tandem stem-loop structures and binds many RNAs beyond roX in vitro. The selectivity of the helicase for physiological substrates is further enhanced by the core DCC. Unwinding of roX2 by MLE induces a highly selective RNA binding surface in the unstructured C-terminus of the MSL2 subunit and triggers-specific association of MLE and roX2 with the core DCC. The exquisite selectivity of roX2 incorporation into the DCC thus originates from intimate cooperation between the helicase and the core DCC involving two distinct RNA selection principles and their mutual refinement.


Assuntos
Montagem e Desmontagem da Cromatina , RNA Longo não Codificante/metabolismo , Transcriptoma , Animais , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Clonagem Molecular/métodos , DNA Helicases/genética , DNA Helicases/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Ligação Proteica , RNA Longo não Codificante/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
14.
Genes Dev ; 28(23): 2652-62, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25452275

RESUMO

The male-specific lethal dosage compensation complex (MSL-DCC) selectively assembles on the X chromosome in Drosophila males and activates gene transcription by twofold through histone acetylation. An MSL recognition element (MRE) sequence motif nucleates the initial MSL association, but how it is recognized remains unknown. Here, we identified the CXC domain of MSL2 specifically recognizing the MRE motif and determined its crystal structure bound to specific and nonspecific DNAs. The CXC domain primarily contacts one strand of DNA duplex and employs a single arginine to directly read out dinucleotide sequences from the minor groove. The arginine is flexible when bound to nonspecific sequences. The core region of the MRE motif harbors two binding sites on opposite strands that can cooperatively recruit a CXC dimer. Specific DNA-binding mutants of MSL2 are impaired in MRE binding and X chromosome localization in vivo. Our results reveal multiple dynamic DNA-binding modes of the CXC domain that target the MSL-DCC to X chromosomes.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Mecanismo Genético de Compensação de Dose , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Modelos Moleculares , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Cromossomo X/química , Cromossomo X/metabolismo , Motivos de Aminoácidos , Animais , Drosophila melanogaster/química , Ligação Proteica , Estrutura Terciária de Proteína
15.
EMBO Rep ; 20(8): e48138, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31286660

RESUMO

In Drosophila melanogaster males, X-chromosome monosomy is compensated by chromosome-wide transcription activation. We found that complete dosage compensation during embryogenesis takes surprisingly long and is incomplete even after 10 h of development. Although the activating dosage compensation complex (DCC) associates with the X-chromosome and MOF acetylates histone H4 early, many genes are not compensated. Acetylation levels on gene bodies continue to increase for several hours after gastrulation in parallel with progressive compensation. Constitutive genes are compensated earlier than developmental genes. Remarkably, later compensation correlates with longer distances to DCC binding sites. This time-space relationship suggests that DCC action on target genes requires maturation of the active chromosome compartment.


Assuntos
Cromossomos de Insetos , Mecanismo Genético de Compensação de Dose , Drosophila melanogaster/genética , Desenvolvimento Embrionário/genética , Regulação da Expressão Gênica no Desenvolvimento , Cromossomo X , Acetilação , Animais , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriologia , Drosophila melanogaster/metabolismo , Embrião não Mamífero , Feminino , Gastrulação/genética , Dosagem de Genes , Histona Acetiltransferases/genética , Histona Acetiltransferases/metabolismo , Histonas/genética , Histonas/metabolismo , Masculino , Monossomia , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Ativação Transcricional
16.
Mol Cell ; 51(2): 174-84, 2013 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-23870143

RESUMO

Dosage compensation in Drosophila involves a global activation of genes on the male X chromosome. The activating complex (MSL-DCC) consists of male-specific-lethal (MSL) proteins and two long, noncoding roX RNAs. The roX RNAs are essential for X-chromosomal targeting, but their contributions to MSL-DCC structure and function are enigmatic. Conceivably, the RNA helicase MLE, itself an MSL subunit, is actively involved in incorporating roX into functional DCC. We determined the secondary structure of roX2 and mapped specific interaction sites for MLE in vitro. Upon addition of ATP, MLE disrupted a functionally important stem loop in roX2. This RNA remodeling enhanced specific ATP-dependent association of MSL2, the core subunit of the MSL-DCC, providing a link between roX and MSL subunits. Probing the conformation of roX in vivo revealed a remodeled stem loop in chromatin-bound roX2. The active remodeling of a stable secondary structure by MLE may constitute a rate-limiting step for MSL-DCC assembly.


Assuntos
Trifosfato de Adenosina/farmacologia , Proteínas Cromossômicas não Histona/metabolismo , DNA Helicases/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , RNA Helicases/metabolismo , Proteínas de Ligação a RNA/genética , RNA/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Cromossomo X/genética , Animais , Animais Geneticamente Modificados , Pareamento de Bases , Western Blotting , Cromatina/genética , Proteínas Cromossômicas não Histona/genética , DNA Helicases/genética , Proteínas de Drosophila/química , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/metabolismo , Ensaio de Desvio de Mobilidade Eletroforética , Genes DCC/genética , Imunoprecipitação , Masculino , Mutação/genética , Conformação de Ácido Nucleico , RNA/química , RNA/metabolismo , RNA Helicases/genética , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Fatores de Transcrição/química , Transcrição Gênica , Cromossomo X/metabolismo
17.
Nucleic Acids Res ; 47(4): 1706-1724, 2019 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-30541149

RESUMO

Transcription regulators select their genomic binding sites from a large pool of similar, non-functional sequences. Although general principles that allow such discrimination are known, the complexity of DNA elements often precludes a prediction of functional sites. The process of dosage compensation in Drosophila allows exploring the rules underlying binding site selectivity. The male-specific-lethal (MSL) Dosage Compensation Complex (DCC) selectively binds to some 300 X chromosomal 'High Affinity Sites' (HAS) containing GA-rich 'MSL recognition elements' (MREs), but disregards thousands of other MRE sequences in the genome. The DNA-binding subunit MSL2 alone identifies a subset of MREs, but fails to recognize most MREs within HAS. The 'Chromatin-linked adaptor for MSL proteins' (CLAMP) also interacts with many MREs genome-wide and promotes DCC binding to HAS. Using genome-wide DNA-immunoprecipitation we describe extensive cooperativity between both factors, depending on the nature of the binding sites. These are explained by physical interaction between MSL2 and CLAMP. In vivo, both factors cooperate to compete with nucleosome formation at HAS. The male-specific MSL2 thus synergises with a ubiquitous GA-repeat binding protein for refined X/autosome discrimination.


Assuntos
Cromossomos/genética , Proteínas de Ligação a DNA/genética , Mecanismo Genético de Compensação de Dose , Proteínas de Drosophila/genética , Proteínas Nucleares/genética , Fatores de Transcrição/genética , Animais , Sítios de Ligação/genética , Cromatina/genética , Drosophila melanogaster/genética , Regulação da Expressão Gênica , Genoma de Inseto/genética , Nucleossomos/genética , Ligação Proteica/genética , Cromossomo X
18.
Nucleic Acids Res ; 47(14): 7444-7459, 2019 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-31147711

RESUMO

Preblastoderm Drosophila embryo development is characterized by fast cycles of nuclear divisions. Extracts from these embryos can be used to reconstitute complex chromatin with high efficiency. We now discovered that this chromatin assembly system contains activities that recognize unprotected DNA ends and signal DNA damage through phosphorylation. DNA ends are initially bound by Ku and MRN complexes. Within minutes, the phosphorylation of H2A.V (homologous to γH2A.X) initiates from DNA breaks and spreads over tens of thousands DNA base pairs. The γH2A.V phosphorylation remains tightly associated with the damaged DNA and does not spread to undamaged DNA in the same reaction. This first observation of long-range γH2A.X spreading along damaged chromatin in an in vitro system provides a unique opportunity for mechanistic dissection. Upon further incubation, DNA ends are rendered single-stranded and bound by the RPA complex. Phosphoproteome analyses reveal damage-dependent phosphorylation of numerous DNA-end-associated proteins including Ku70, RPA2, CHRAC16, the exonuclease Rrp1 and the telomer capping complex. Phosphorylation of spindle assembly checkpoint components and of microtubule-associated proteins required for centrosome integrity suggests this cell-free system recapitulates processes involved in the regulated elimination of fatally damaged syncytial nuclei.


Assuntos
Sistema Livre de Células/metabolismo , Quebras de DNA , Drosophila/genética , Transdução de Sinais , Animais , Linhagem Celular , Cromatina/genética , Cromatina/metabolismo , Reparo do DNA , Drosophila/citologia , Drosophila/embriologia , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Histonas/genética , Histonas/metabolismo , Autoantígeno Ku/genética , Autoantígeno Ku/metabolismo , Fosforilação , Proteoma/genética , Proteoma/metabolismo , Proteômica/métodos
19.
Nucleic Acids Res ; 47(8): 4319-4333, 2019 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-30805612

RESUMO

Maleless (MLE) is an evolutionary conserved member of the DExH family of helicases in Drosophila. Besides its function in RNA editing and presumably siRNA processing, MLE is best known for its role in remodelling non-coding roX RNA in the context of X chromosome dosage compensation in male flies. MLE and its human orthologue, DHX9 contain two tandem double-stranded RNA binding domains (dsRBDs) located at the N-terminal region. The two dsRBDs are essential for localization of MLE at the X-territory and it is presumed that this involves binding roX secondary structures. However, for dsRBD1 roX RNA binding has so far not been described. Here, we determined the solution NMR structure of dsRBD1 and dsRBD2 of MLE in tandem and investigated its role in double-stranded RNA (dsRNA) binding. Our NMR and SAXS data show that both dsRBDs act as independent structural modules in solution and are canonical, non-sequence-specific dsRBDs featuring non-canonical KKxAXK RNA binding motifs. NMR titrations combined with filter binding experiments and isothermal titration calorimetry (ITC) document the contribution of dsRBD1 to dsRNA binding in vitro. Curiously, dsRBD1 mutants in which dsRNA binding in vitro is strongly compromised do not affect roX2 RNA binding and MLE localization in cells. These data suggest alternative functions for dsRBD1 in vivo.


Assuntos
Proteínas Cromossômicas não Histona/química , DNA Helicases/química , Proteínas de Drosophila/química , Drosophila melanogaster/química , RNA Longo não Codificante/química , Fatores de Transcrição/química , Sequência de Aminoácidos , Animais , Sítios de Ligação , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Clonagem Molecular , DNA Helicases/genética , DNA Helicases/metabolismo , Mecanismo Genético de Compensação de Dose , Motivo de Ligação ao RNA de Cadeia Dupla , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Regulação da Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Cinética , Masculino , Modelos Moleculares , Conformação de Ácido Nucleico , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
20.
Mol Cell ; 48(4): 647-54, 2012 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-23084834

RESUMO

The process of dosage compensation (DC) in Drosophila counterbalances the monosomy of the X chromosome in male flies by increasing the transcription from this unique chromosome in the two-fold range. Upon exclusive expression of male-specific lethal 2 (MSL2) in males, the dosage compensation machinery assembles on active X-chromosomal genes. Overexpression of MSL proteins leads to aberrant binding of complex components to autosomes. Accordingly, MSL levels have to be carefully regulated. Here we describe a new mechanism through which MSL2 can fulfill its role as the central regulator of the faithful biogenesis and functionality of the DC machinery. MSL2 is an E3 ligase that ubiquitylates itself and the other associated components when their stoichiometry is unbalanced, uncovering proteasome-dependent degradation as an additional layer of homeostatic control of MSL levels. Furthermore, systematic mapping of modification sites by mass spectrometry and chromatin interaction studies on the target protein MSL1 suggest that the role of MSL2-mediated ubiquitylation goes beyond proteolysis.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Mecanismo Genético de Compensação de Dose , Proteínas de Drosophila/metabolismo , Homeostase , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Animais , Células Cultivadas , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Drosophila melanogaster/química , Drosophila melanogaster/citologia , Drosophila melanogaster/metabolismo , Masculino , Proteínas Nucleares/química , Proteínas Nucleares/genética , Fatores de Transcrição/química , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA