Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Trends Genet ; 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38853120

RESUMO

The complexity of the brain is closely tied to its nature as a genetic mosaic, wherein each cell is distinguished by a unique constellation of somatic variants that contribute to functional and phenotypic diversity. Postzygotic variation arising during neurogenesis is recognized as a key contributor to brain mosaicism; however, recent advances have broadened our understanding to include sources of neural genomic diversity that develop throughout the entire lifespan, from embryogenesis through aging. Moving beyond the traditional confines of neurodevelopment, in this review, we delve into the complex mechanisms that enable various origins of brain mosaicism.

2.
EMBO J ; 40(3): e105819, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33300615

RESUMO

Neurogenesis in the adult hippocampus declines with age, a process that has been implicated in cognitive and emotional impairments. However, the mechanisms underlying this decline have remained elusive. Here, we show that the age-dependent downregulation of lamin B1, one of the nuclear lamins in adult neural stem/progenitor cells (ANSPCs), underlies age-related alterations in adult hippocampal neurogenesis. Our results indicate that higher levels of lamin B1 in ANSPCs safeguard against premature differentiation and regulate the maintenance of ANSPCs. However, the level of lamin B1 in ANSPCs declines during aging. Precocious loss of lamin B1 in ANSPCs transiently promotes neurogenesis but eventually depletes it. Furthermore, the reduction of lamin B1 in ANSPCs recapitulates age-related anxiety-like behavior in mice. Our results indicate that the decline in lamin B1 underlies stem cell aging and impacts the homeostasis of adult neurogenesis and mood regulation.


Assuntos
Envelhecimento/metabolismo , Ansiedade/genética , Regulação para Baixo , Hipocampo/citologia , Lamina Tipo B/genética , Lamina Tipo B/metabolismo , Envelhecimento/genética , Animais , Diferenciação Celular , Linhagem Celular , Modelos Animais de Doenças , Feminino , Hipocampo/metabolismo , Masculino , Camundongos , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Neurogênese , Ratos
3.
Brain ; 146(1): 387-404, 2023 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-35802027

RESUMO

Variants in the AUTS2 gene are associated with a broad spectrum of neurological conditions characterized by intellectual disability, microcephaly, and congenital brain malformations. Here, we use a human cerebral organoid model to investigate the pathophysiology of a heterozygous de novo missense AUTS2 variant identified in a patient with multiple neurological impairments including primary microcephaly and profound intellectual disability. Proband cerebral organoids exhibit reduced growth, deficits in neural progenitor cell (NPC) proliferation and disrupted NPC polarity within ventricular zone-like regions compared to control cerebral organoids. We used CRISPR-Cas9-mediated gene editing to correct this variant and demonstrate rescue of impaired organoid growth and NPC proliferative deficits. Single-cell RNA sequencing revealed a marked reduction of G1/S transition gene expression and alterations in WNT-ß-catenin signalling within proband NPCs, uncovering a novel role for AUTS2 in NPCs during human cortical development. Collectively, these results underscore the value of cerebral organoids to investigate molecular mechanisms underlying AUTS2 syndrome.


Assuntos
Transtorno Autístico , Deficiência Intelectual , Microcefalia , Células-Tronco Neurais , Humanos , Microcefalia/genética , Microcefalia/metabolismo , Deficiência Intelectual/genética , Organoides/metabolismo , Proteínas do Citoesqueleto , Fatores de Transcrição/metabolismo
4.
Proc Natl Acad Sci U S A ; 118(23)2021 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-34083437

RESUMO

Transposable elements (TEs) are mobile sequences that engender widespread mutations and thus are a major hazard that must be silenced. The most abundant active class of TEs in mammalian genomes is long interspersed element class 1 (LINE1). Here, we report that LINE1 transposition is suppressed in the male germline by transcription factors encoded by a rapidly evolving X-linked homeobox gene cluster. LINE1 transposition is repressed by many members of this RHOX transcription factor family, including those with different patterns of expression during spermatogenesis. One family member-RHOX10-suppresses LINE1 transposition during fetal development in vivo when the germline would otherwise be susceptible to LINE1 activation because of epigenetic reprogramming. We provide evidence that RHOX10 suppresses LINE transposition by inducing Piwil2, which encodes a key component in the Piwi-interacting RNA pathway that protects against TEs. The ability of RHOX transcription factors to suppress LINE1 is conserved in humans but is lost in RHOXF2 mutants from several infertile human patients, raising the possibility that loss of RHOXF2 causes human infertility by allowing uncontrolled LINE1 expression in the germline. Together, our results support a model in which the Rhox gene cluster is in an evolutionary arms race with TEs, resulting in expansion of the Rhox gene cluster to suppress TEs in different biological contexts.


Assuntos
Elementos de DNA Transponíveis/genética , Células Germinativas/metabolismo , Elementos Nucleotídeos Longos e Dispersos/genética , Elementos Nucleotídeos Longos e Dispersos/fisiologia , Família Multigênica , Animais , Regulação da Expressão Gênica , Genes Ligados ao Cromossomo X , Células HEK293 , Proteínas de Homeodomínio , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Espermatogênese/genética , Fatores de Transcrição/metabolismo
5.
Neurobiol Dis ; 180: 106074, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36907520

RESUMO

As cells divide during development, errors in DNA replication and repair lead to somatic mosaicism - a phenomenon in which different cell lineages harbor unique constellations of genetic variants. Over the past decade, somatic variants that disrupt mTOR signaling, protein glycosylation, and other functions during brain development have been linked to cortical malformations and focal epilepsy. More recently, emerging evidence points to a role for Ras pathway mosaicism in epilepsy. The Ras family of proteins is a critical driver of MAPK signaling. Disruption of the Ras pathway is most known for its association with tumorigenesis; however, developmental disorders known as RASopathies commonly have a neurological component that sometimes includes epilepsy, offering evidence for Ras involvement in brain development and epileptogenesis. Brain somatic variants affecting the Ras pathway (e.g., KRAS, PTPN11, BRAF) are now strongly associated with focal epilepsy through genotype-phenotype association studies as well as mechanistic evidence. This review summarizes the Ras pathway and its involvement in epilepsy and neurodevelopmental disorders, focusing on new evidence regarding Ras pathway mosaicism and the potential future clinical implications.


Assuntos
Epilepsias Parciais , Epilepsia , Humanos , Mosaicismo , Encéfalo , Epilepsia/genética , Transdução de Sinais/genética , Mutação
6.
Epilepsia ; 63(8): 1981-1997, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35687047

RESUMO

OBJECTIVE: Epilepsy-associated developmental lesions, including malformations of cortical development and low-grade developmental tumors, represent a major cause of drug-resistant seizures requiring surgical intervention in children. Brain-restricted somatic mosaicism has been implicated in the genetic etiology of these lesions; however, many contributory genes remain unidentified. METHODS: We enrolled 50 children who were undergoing epilepsy surgery into a translational research study. Resected tissue was divided for clinical neuropathologic evaluation and genomic analysis. We performed exome and RNA sequencing to identify somatic variation and we confirmed our findings using high-depth targeted DNA sequencing. RESULTS: We uncovered candidate disease-causing somatic variation affecting 28 patients (56%), as well as candidate germline variants affecting 4 patients (8%). In agreement with previous studies, we identified somatic variation affecting solute carrier family 35 member A2 (SLC35A2) and mechanistic target of rapamycin kinase (MTOR) pathway genes in patients with focal cortical dysplasia. Somatic gains of chromosome 1q were detected in 30% (3 of 10) of patients with Type I focal cortical dysplasia (FCD)s. Somatic variation in mitogen-activated protein kinase (MAPK) pathway genes (i.e., fibroblast growth factor receptor 1 [FGFR1], FGFR2, B-raf proto-oncogene, serine/threonine kinase [BRAF], and KRAS proto-oncogene, GTPase [KRAS]) was associated with low-grade epilepsy-associated developmental tumors. RNA sequencing enabled the detection of somatic structural variation that would have otherwise been missed, and which accounted for more than one-half of epilepsy-associated tumor diagnoses. Sampling across multiple anatomic regions revealed that somatic variant allele fractions vary widely within epileptogenic tissue. Finally, we identified putative disease-causing variants in genes not yet associated with focal cortical dysplasia. SIGNIFICANCE: These results further elucidate the genetic basis of structural brain abnormalities leading to focal epilepsy in children and point to new candidate disease genes.


Assuntos
Epilepsia , Malformações do Desenvolvimento Cortical , Encéfalo/patologia , Criança , Epilepsia/patologia , Humanos , Malformações do Desenvolvimento Cortical/complicações , Malformações do Desenvolvimento Cortical/genética , Malformações do Desenvolvimento Cortical/metabolismo , Mutação , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo
7.
Brain ; 144(10): 2971-2978, 2021 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-34048549

RESUMO

Phosphatase and tensin homologue (PTEN) regulates cell growth and survival through inhibition of the mammalian target of rapamycin (MTOR) signalling pathway. Germline genetic variation of PTEN is associated with autism, macrocephaly and PTEN hamartoma tumour syndromes. The effect of developmental PTEN somatic mutations on nervous system phenotypes is not well understood, although brain somatic mosaicism of MTOR pathway genes is an emerging cause of cortical dysplasia and epilepsy in the paediatric population. Here we report two somatic variants of PTEN affecting a single patient presenting with intractable epilepsy and hemimegalencephaly that varied in clinical severity throughout the left cerebral hemisphere. High-throughput sequencing analysis of affected brain tissue identified two somatic variants in PTEN. The first variant was present in multiple cell lineages throughout the entire hemisphere and associated with mild cerebral overgrowth. The second variant was restricted to posterior brain regions and affected the opposite PTEN allele, resulting in a segmental region of more severe malformation, and the only neurons in which it was found by single-nuclei RNA-sequencing had a unique disease-related expression profile. This study reveals brain mosaicism of PTEN as a disease mechanism of hemimegalencephaly and furthermore demonstrates the varying effects of single- or bi-allelic disruption of PTEN on cortical phenotypes.


Assuntos
Córtex Cerebral/diagnóstico por imagem , Variação Genética/genética , Hemimegalencefalia/diagnóstico por imagem , Hemimegalencefalia/genética , Mutação/genética , PTEN Fosfo-Hidrolase/genética , Córtex Cerebral/cirurgia , Hemimegalencefalia/cirurgia , Humanos , Lactente , Masculino
8.
Genes Chromosomes Cancer ; 60(9): 640-646, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34041825

RESUMO

Gastroblastomas are rare tumors with a biphasic epithelioid/spindle cell morphology that typically present in early adulthood and have recurrent MALAT1-GLI1 fusions. We describe an adolescent patient with Wiskott-Aldrich syndrome who presented with a large submucosal gastric tumor with biphasic morphology. Despite histologic features consistent with gastroblastoma, a MALAT1-GLI1 fusion was not found in this patient's tumor; instead, comprehensive molecular profiling identified a novel EWSR1-CTBP1 fusion and no other significant genetic alterations. The tumor also overexpressed NOTCH and FGFR by RNA profiling. The novel fusion and expression profile suggest a role for epithelial-mesenchymal transition in this tumor, with potential implications for the pathogenesis of biphasic gastric tumors such as gastroblastoma.


Assuntos
Oxirredutases do Álcool/genética , Carcinoma/genética , Proteínas de Ligação a DNA/genética , Proteínas de Fusão Oncogênica/genética , Proteína EWS de Ligação a RNA/genética , Neoplasias Gástricas/genética , Adolescente , Idade de Início , Carcinoma/patologia , Humanos , Masculino , Neoplasias Gástricas/patologia
9.
BMC Genomics ; 22(1): 872, 2021 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-34863095

RESUMO

BACKGROUND: Pediatric cancers typically have a distinct genomic landscape when compared to adult cancers and frequently carry somatic gene fusion events that alter gene expression and drive tumorigenesis. Sensitive and specific detection of gene fusions through the analysis of next-generation-based RNA sequencing (RNA-Seq) data is computationally challenging and may be confounded by low tumor cellularity or underlying genomic complexity. Furthermore, numerous computational tools are available to identify fusions from supporting RNA-Seq reads, yet each algorithm demonstrates unique variability in sensitivity and precision, and no clearly superior approach currently exists. To overcome these challenges, we have developed an ensemble fusion calling approach to increase the accuracy of identifying fusions. RESULTS: Our Ensemble Fusion (EnFusion) approach utilizes seven fusion calling algorithms: Arriba, CICERO, FusionMap, FusionCatcher, JAFFA, MapSplice, and STAR-Fusion, which are packaged as a fully automated pipeline using Docker and Amazon Web Services (AWS) serverless technology. This method uses paired end RNA-Seq sequence reads as input, and the output from each algorithm is examined to identify fusions detected by a consensus of at least three algorithms. These consensus fusion results are filtered by comparison to an internal database to remove likely artifactual fusions occurring at high frequencies in our internal cohort, while a "known fusion list" prevents failure to report known pathogenic events. We have employed the EnFusion pipeline on RNA-Seq data from 229 patients with pediatric cancer or blood disorders studied under an IRB-approved protocol. The samples consist of 138 central nervous system tumors, 73 solid tumors, and 18 hematologic malignancies or disorders. The combination of an ensemble fusion-calling pipeline and a knowledge-based filtering strategy identified 67 clinically relevant fusions among our cohort (diagnostic yield of 29.3%), including RBPMS-MET, BCAN-NTRK1, and TRIM22-BRAF fusions. Following clinical confirmation and reporting in the patient's medical record, both known and novel fusions provided medically meaningful information. CONCLUSIONS: The EnFusion pipeline offers a streamlined approach to discover fusions in cancer, at higher levels of sensitivity and accuracy than single algorithm methods. Furthermore, this method accurately identifies driver fusions in pediatric cancer, providing clinical impact by contributing evidence to diagnosis and, when appropriate, indicating targeted therapies.


Assuntos
Genoma , Neoplasias , Criança , Genômica , Humanos , Neoplasias/genética , Análise de Sequência de DNA , Análise de Sequência de RNA
10.
Annu Rev Physiol ; 78: 109-31, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26208951

RESUMO

Disruption of circadian rhythms, provoked by artificial lighting at night, inconsistent sleep-wake schedules, and transmeridian air travel, is increasingly prevalent in modern society. Desynchrony of biological rhythms from environmental light cycles has dramatic consequences for human health. In particular, disrupting homeostatic oscillations in endocrine tissues and the hormones that these tissues regulate can have cascading effects on physiology and behavior. Accumulating evidence suggests that chronic disruption of circadian organization of endocrine function may lead to metabolic, reproductive, sleep, and mood disorders. This review discusses circadian control of endocrine systems and the consequences of distorting rhythmicity of these systems.


Assuntos
Ritmo Circadiano/fisiologia , Sistema Endócrino/fisiologia , Animais , Humanos , Iluminação/efeitos adversos , Sono/fisiologia
11.
J Neurosci ; 33(32): 13081-7, 2013 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-23926261

RESUMO

Life on earth is entrained to a 24 h solar cycle that synchronizes circadian rhythms in physiology and behavior; light is the most potent entraining cue. In mammals, light is detected by (1) rods and cones, which mediate visual function, and (2) intrinsically photosensitive retinal ganglion cells (ipRGCs), which primarily project to the suprachiasmatic nucleus (SCN) in the hypothalamus to regulate circadian rhythms. Recent evidence, however, demonstrates that ipRGCs also project to limbic brain regions, suggesting that, through this pathway, light may have a role in cognition and mood. Therefore, it follows that unnatural exposure to light may have negative consequences for mood or behavior. Modern environmental lighting conditions have led to excessive exposure to light at night (LAN), and particularly to blue wavelength lights. We hypothesized that nocturnal light exposure (i.e., dim LAN) would induce depressive responses and alter neuronal structure in hamsters (Phodopus sungorus). If this effect is mediated by ipRGCs, which have reduced sensitivity to red wavelength light, then we predicted that red LAN would have limited effects on brain and behavior compared with shorter wavelengths. Additionally, red LAN would not induce c-Fos activation in the SCN. Our results demonstrate that exposure to LAN influences behavior and neuronal plasticity and that this effect is likely mediated by ipRGCs. Modern sources of LAN that contain blue wavelengths may be particularly disruptive to the circadian system, potentially contributing to altered mood regulation.


Assuntos
Ritmo Circadiano/fisiologia , Luz/efeitos adversos , Transtornos do Humor/etiologia , Análise de Variância , Animais , Cricetinae , Relação Dose-Resposta à Radiação , Feminino , Privação de Alimentos/fisiologia , Preferências Alimentares/fisiologia , Preferências Alimentares/efeitos da radiação , Análise de Fourier , Regulação da Expressão Gênica/efeitos da radiação , Hipocampo/patologia , Hipocampo/efeitos da radiação , Resposta de Imobilidade Tônica/efeitos da radiação , Transtornos do Humor/patologia , Atividade Motora/fisiologia , Atividade Motora/efeitos da radiação , Phodopus , Proteínas Proto-Oncogênicas c-fos/metabolismo , Comportamento Social , Núcleo Supraquiasmático/metabolismo , Fatores de Tempo
12.
Proc Natl Acad Sci U S A ; 108(28): 11686-91, 2011 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-21709248

RESUMO

Both normal aging and dementia are associated with dysregulation of the biological clock, which contributes to disrupted circadian organization of physiology and behavior. Diminished circadian organization in conjunction with the loss of cholinergic input to the cortex likely contributes to impaired cognition and behavior. One especially notable and relatively common circadian disturbance among the aged is "sundowning syndrome," which is characterized by exacerbated anxiety, agitation, locomotor activity, and delirium during the hours before bedtime. Sundowning has been reported in both dementia patients and cognitively intact elderly individuals living in institutions; however, little is known about temporal patterns in anxiety and agitation, and the neurobiological basis of these rhythms remains unspecified. In the present study, we explored the diurnal pattern of anxiety-like behavior in aged and amyloid precursor protein (APP) transgenic mice. We then attempted to treat the observed behavioral disturbances in the aged mice using chronic nightly melatonin treatment. Finally, we tested the hypothesis that time-of-day differences in acetylcholinesterase and choline acetyltransferase expression and general neuronal activation (i.e., c-Fos expression) coincide with the behavioral symptoms. Our results show a temporal pattern of anxiety-like behavior that emerges in elderly mice. This behavioral pattern coincides with elevated locomotor activity relative to adult mice near the end of the dark phase, and with time-dependent changes in basal forebrain acetylcholinesterase expression. Transgenic APP mice show a similar behavioral phenomenon that is not observed among age-matched wild-type mice. These results may have useful applications to the study and treatment of age- and dementia-related circadian behavioral disturbances, namely, sundowning syndrome.


Assuntos
Envelhecimento/fisiologia , Envelhecimento/psicologia , Precursor de Proteína beta-Amiloide/fisiologia , Ansiedade/fisiopatologia , Ansiedade/psicologia , Transtornos Cronobiológicos/fisiopatologia , Transtornos Cronobiológicos/psicologia , Envelhecimento/sangue , Doença de Alzheimer/fisiopatologia , Doença de Alzheimer/psicologia , Precursor de Proteína beta-Amiloide/genética , Animais , Ansiedade/sangue , Núcleo Basal de Meynert/metabolismo , Comportamento Animal/efeitos dos fármacos , Comportamento Animal/fisiologia , Colina O-Acetiltransferase/metabolismo , Ritmo Circadiano/efeitos dos fármacos , Ritmo Circadiano/fisiologia , Corticosterona/sangue , Demência/fisiopatologia , Demência/psicologia , Modelos Animais de Doenças , Humanos , Masculino , Melatonina/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Atividade Motora/efeitos dos fármacos , Atividade Motora/fisiologia , Proteínas Proto-Oncogênicas c-fos/metabolismo
13.
Mol Ther Nucleic Acids ; 35(1): 102134, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38384445

RESUMO

A "universal strategy" replacing the full-length CFTR cDNA may treat >99% of people with cystic fibrosis (pwCF), regardless of their specific mutations. Cas9-based gene editing was used to insert the CFTR cDNA and a truncated CD19 (tCD19) enrichment tag at the CFTR locus in airway basal stem cells. This strategy restores CFTR function to non-CF levels. Here, we investigate the safety of this approach by assessing genomic and regulatory changes after CFTR cDNA insertion. Safety was first assessed by quantifying genetic rearrangements using CAST-seq. After validating restored CFTR function in edited and enriched airway cells, the CFTR locus open chromatin profile was characterized using ATAC-seq. The regenerative potential and differential gene expression in edited cells was assessed using scRNA-seq. CAST-seq revealed a translocation in ∼0.01% of alleles primarily occurring at a nononcogenic off-target site and large indels in 1% of alleles. The open chromatin profile of differentiated airway epithelial cells showed no appreciable changes, except in the region corresponding to the CFTR cDNA and tCD19 cassette, indicating no detectable changes in gene regulation. Edited stem cells produced the same types of airway cells as controls with minimal alternations in gene expression. Overall, the universal strategy showed minor undesirable genomic changes.

14.
Neurosci Lett ; 836: 137881, 2024 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-38909838

RESUMO

Brain somatic variants in SLC35A2, an intracellular UDP-galactose transporter, are commonly identified mutations associated with drug-resistant neocortical epilepsy and developmental brain malformations, including focal cortical dysplasia type I and mild malformation of cortical development with oligodendroglial hyperplasia in epilepsy (MOGHE). However, the causal effects of altered SLC35A2 function on cortical development remain untested. We hypothesized that focal Slc35a2 knockout (KO) or knockdown (KD) in the developing mouse cortex would disrupt cortical development and change network excitability. Through two independent studies, we used in utero electroporation (IUE) to introduce CRISPR/Cas9/targeted guide RNAs or short-hairpin RNAs into the embryonic mouse brain at day 14.5-15.5 to achieve Slc35a2 KO or KD, respectively, from neural precursor cells. Slc35a2 KO or KD caused disrupted radial migration of electroporated neurons evidenced by heterotopic cells located in lower cortical layers and in the sub-cortical white matter. Slc35a2 KO in neurons did not induce changes in oligodendrocyte number, importantly suggesting that the oligodendroglial hyperplasia observed in MOGHE originates from distinct cell autonomous effects of Slc35a2 mutations. Adult KO mice were implanted with EEG electrodes for 72-hour continuous recording. Spontaneous seizures were not observed in focal Slc35a2 KO mice, but there was reduced seizure threshold following pentylenetetrazol injection. Here we demonstrate that focal Slc35a2 KO or KD in vivo disrupts corticogenesis through altered neuronal migration and that KO leads to reduced seizure threshold. Together these results demonstrate a direct causal role for SLC35A2 in cortical development.


Assuntos
Córtex Cerebral , Proteínas de Transporte de Monossacarídeos , Animais , Córtex Cerebral/metabolismo , Camundongos , Proteínas de Transporte de Monossacarídeos/genética , Proteínas de Transporte de Monossacarídeos/deficiência , Camundongos Knockout , Neurônios/metabolismo , Oligodendroglia/metabolismo , Feminino , Epilepsia/genética , Epilepsia/patologia , Movimento Celular
15.
Neurooncol Adv ; 6(1): vdad163, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38213835

RESUMO

Retinoblastoma is an ocular cancer associated with genomic variation in the RB1 gene. In individuals with bilateral retinoblastoma, a germline variant in RB1 is identified in virtually all cases. We describe herein an individual with bilateral retinoblastoma for whom multiple clinical lab assays performed by outside commercial laboratories failed to identify a germline RB1 variant. Paired tumor/normal exome sequencing, long-read whole genome sequencing, and long-read isoform sequencing was performed on a translational research basis ultimately identified a germline likely de novo Long Interspersed Nuclear Element (LINE)-1 mediated deletion resulting in a premature stop of translation of RB1 as the underlying genetic cause of retinoblastoma in this individual. Based on these research findings, the LINE-1 mediated deletion was confirmed via Sanger sequencing in our clinical laboratory, and results were reported in the patient's medical record to allow for appropriate genetic counseling.

16.
Cell Rep ; 43(2): 113774, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38349791

RESUMO

Long interspersed nuclear element-1 (L1 or LINE-1) is a highly abundant mobile genetic element in both humans and mice, comprising almost 20% of each genome. L1s are silenced by several mechanisms, as their uncontrolled expression has the potential to induce genomic instability. However, L1s are paradoxically expressed at high levels in differentiating neural progenitor cells. Using in vitro and in vivo techniques to modulate L1 expression, we report that L1s play a critical role in both human and mouse brain development by regulating the rate of neural differentiation in a reverse-transcription-independent manner.


Assuntos
Instabilidade Genômica , Células-Tronco Neurais , Humanos , Animais , Camundongos , Diferenciação Celular , Elementos Nucleotídeos Longos e Dispersos
17.
Brain Behav Immun ; 34: 39-42, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23743259

RESUMO

Several physiological and behavioral processes rely on precisely timed light information derived from the natural solar cycle. Using this information, traits have adapted to allow individuals within specific niches to optimize survival and reproduction, but urbanization by humans has significantly altered natural habitats. Nighttime light exposure alters immune function in several species, which could lead to decreased fitness or survival, particularly in the face of an environmental challenge. We exposed male Siberian hamsters (Phodopus sungorus) to five lux of light at night for four weeks, and then administered six hours of acute restraint stress. Delayed-type hypersensitivity (DTH) response was assessed immediately following stress. Acute restraint increased the DTH reaction in dark nights, but exposure to nighttime light prevented this response. Exposure to light at night prolonged the DTH response in non-stressed control hamsters. These results suggest that light pollution may significantly alter physiological responses in Siberian hamsters, particularly in response to a salient environmental challenge such as stress.


Assuntos
Hipersensibilidade Tardia/imunologia , Luz , Estresse Fisiológico/imunologia , Animais , Cricetinae , Masculino , Phodopus , Fatores de Tempo
18.
Sci Rep ; 13(1): 527, 2023 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-36631516

RESUMO

Somatic variants are a major cause of human disease, including neurological disorders like focal epilepsies, but can be challenging to study due to their mosaicism in bulk tissue biopsies. Coupling single-cell genotype and transcriptomic data has potential to provide insight into the role somatic variants play in disease etiology, such as by determining what cell types are affected or how the mutations affect gene expression. Here, we asked whether commonly used single-nucleus 3'- or 5'-RNA-sequencing assays can be used to derive single-nucleus genotype data for a priori known variants that are located near to either end of a transcript. To that end, we compared performance of commercially available single-nuclei 3'- and 5'- gene expression kits using resected brain samples from three pediatric patients with focal epilepsy. We quantified the ability to detect genetic variants in single-nucleus datasets depending on distance from the transcript end. Finally, we demonstrated the ability to identify affected cell types in a patient with a RHEB somatic variant causing an epilepsy-associated cortical malformation. Our results demonstrate that single-nuclei 3' or 5'-RNA-sequencing data can be used to identify known somatic variants in single-nuclei when they are expressed within proximity to a transcript end.


Assuntos
Epilepsias Parciais , Epilepsia , Perfilação da Expressão Gênica , Núcleo Solitário , Criança , Humanos , Epilepsias Parciais/genética , Epilepsias Parciais/patologia , Epilepsia/genética , Epilepsia/patologia , Mutação , Neurônios/patologia , Núcleo Solitário/metabolismo , Transcriptoma , Perfilação da Expressão Gênica/métodos
19.
bioRxiv ; 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38077069

RESUMO

Brain somatic variants in SLC35A2 are associated with clinically drug-resistant epilepsy and developmental brain malformations, including mild malformation of cortical development with oligodendroglial hyperplasia in epilepsy (MOGHE). SLC35A2 encodes a uridine diphosphate galactose translocator that is essential for protein glycosylation; however, the neurodevelopmental mechanisms by which SLC35A2 disruption leads to clinical and histopathological features remain unspecified. We hypothesized that focal knockout (KO) or knockdown (KD) of Slc35a2 in the developing mouse cortex would disrupt cerebral cortical development through altered neuronal migration and cause changes in network excitability. We used in utero electroporation (IUE) to introduce CRISPR/Cas9 and targeted guide RNAs or short-hairpin RNAs to achieve Slc35a2 KO or KD, respectively, during early corticogenesis. Following Slc35a2 KO or KD, we observed disrupted radial migration of transfected neurons evidenced by heterotopic cells located in lower cortical layers and in the sub-cortical white matter. Slc35a2 KO in neurons did not induce changes in oligodendrocyte number, suggesting that the oligodendroglial hyperplasia observed in MOGHE originates from distinct cell autonomous effects. Spontaneous seizures were not observed, but intracranial EEG recordings after focal KO showed a reduced seizure threshold following pentylenetetrazol injection. These results demonstrate that Slc35a2 KO or KD in vivo disrupts corticogenesis through altered neuronal migration.

20.
Nat Genet ; 55(11): 1920-1928, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37872450

RESUMO

Somatic mosaicism is a known cause of neurological disorders, including developmental brain malformations and epilepsy. Brain mosaicism is traditionally attributed to post-zygotic genetic alterations arising in fetal development. Here we describe post-zygotic rescue of meiotic errors as an alternate origin of brain mosaicism in patients with focal epilepsy who have mosaic chromosome 1q copy number gains. Genomic analysis showed evidence of an extra parentally derived chromosome 1q allele in the resected brain tissue from five of six patients. This copy number gain is observed only in patient brain tissue, but not in blood or buccal cells, and is strongly enriched in astrocytes. Astrocytes carrying chromosome 1q gains exhibit distinct gene expression signatures and hyaline inclusions, supporting a novel genetic association for astrocytic inclusions in epilepsy. Further, these data demonstrate an alternate mechanism of brain chromosomal mosaicism, with parentally derived copy number gain isolated to brain, reflecting rescue in other tissues during development.


Assuntos
Epilepsias Parciais , Mosaicismo , Humanos , Mucosa Bucal , Mutação , Encéfalo , Epilepsias Parciais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA