Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
New Phytol ; 243(3): 1172-1189, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38853429

RESUMO

IRE1, BI-1, and bZIP60 monitor compatible plant-potexvirus interactions though recognition of the viral TGB3 protein. This study was undertaken to elucidate the roles of three IRE1 isoforms, the bZIP60U and bZIP60S, and BI-1 roles in genetic reprogramming of cells during potexvirus infection. Experiments were performed using Arabidopsis thaliana knockout lines and Plantago asiatica mosaic virus infectious clone tagged with the green fluorescent protein gene (PlAMV-GFP). There were more PlAMV-GFP infection foci in ire1a/b, ire1c, bzip60, and bi-1 knockout than wild-type (WT) plants. Cell-to-cell movement and systemic RNA levels were greater bzip60 and bi-1 than in WT plants. Overall, these data indicate an increased susceptibility to virus infection. Transgenic overexpression of AtIRE1b or StbZIP60 in ire1a/b or bzip60 mutant background reduced virus infection foci, while StbZIP60 expression influences virus movement. Transgenic overexpression of StbZIP60 also confers endoplasmic reticulum (ER) stress resistance following tunicamycin treatment. We also show bZIP60U and TGB3 interact at the ER. This is the first demonstration of a potato bZIP transcription factor complementing genetic defects in Arabidopsis. Evidence indicates that the three IRE1 isoforms regulate the initial stages of virus replication and gene expression, while bZIP60 and BI-1 contribute separately to virus cell-to-cell and systemic movement.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Fatores de Transcrição de Zíper de Leucina Básica , Doenças das Plantas , Plantas Geneticamente Modificadas , Potexvirus , Arabidopsis/virologia , Arabidopsis/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/genética , Doenças das Plantas/virologia , Doenças das Plantas/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Potexvirus/fisiologia , Regulação da Expressão Gênica de Plantas , Retículo Endoplasmático/metabolismo , Estresse do Retículo Endoplasmático , Mutação/genética , Tunicamicina/farmacologia , Proteínas de Membrana , Proteínas Quinases
2.
Fungal Genet Biol ; 163: 103747, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36309094

RESUMO

Colletotrichum graminicola is an economically significant fungal pathogen of maize. The primary infective conidia of the fungus, falcate conidia, are splash-dispersed during rain events. The adhesion of the falcate conidia triggers germination and is required for the development of infection structures. Falcate conidia are capable of immediate adhesion upon encountering the substrate. We report that rapid adhesion in C. graminicola is polarized, with a single-sided strip of adhesive material running the length of a single side (or face) of the conidium between the tips. This strip of adhesive is co-localized with dynamic transverse actin cables, and both the adhesive strip and actin cables are formed after liberation of the conidium from its conidiogenous cell but prior to adhesion to the infection court. Orientation of conidia upon contact with substrate determines whether they will rapidly adhere, and those which do not initially adhere can be induced to do so by applying force to reorient or "flip" the conidia. We propose that C. graminicola possesses an adhesive mechanism resulting in an adhesion efficiency of approximately 50% upon initial contact with substrata, and that an increase in adhesion efficiency can be induced by disturbance.


Assuntos
Adesivos , Colletotrichum , Esporos Fúngicos/genética , Adesivos/análise , Adesivos/metabolismo , Actinas/metabolismo , Colletotrichum/genética
3.
Biomimetics (Basel) ; 9(4)2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38667263

RESUMO

To combat climate change, one approach is to manufacture products from biomass-fungi composite materials instead of petroleum-based plastics. These products can be used in packaging, furniture, and construction industries. A 3D printing-based manufacturing method was developed for these biomass-fungi composite materials, eliminating the need for molds, and enabling customized product design. However, previous studies on the 3D printing-based method showed significant shrinkage of printed samples. In this paper, an approach is proposed to reduce the shrinkage by incorporating ionic crosslinking into biomass-fungi composite materials. This paper reports two sets of experiments regarding the effects of sodium alginate (SA) and calcium chloride (CaCl2) on fungal growth and fungal viability. The first set of experiments was conducted using Petri dishes with fungi isolated from colonized biomass-fungi material and different concentrations of SA and CaCl2. Fungal growth was measured by the circumference of fungal colonies. The results showed that concentrations of SA and CaCl2 had significant effects on fungal growth and no fungal growth was observed on Petri dishes with 15% CaCl2. Some of these Petri dishes were also observed under confocal microscopy. The results confirmed the differences obtained by measuring the circumference of fungal colonies. The second set of experiments was conducted using Petri dishes with biomass-fungi mixtures that were treated with different concentrations of SA and exposure times in a CaCl2 (crosslinking) solution. Fungal viability was measured by counting colony-forming units. The results showed that the addition of the SA solution and exposure times in the crosslinking solution had statistically significant effects on fungal viability. The 2SA solution was prepared by dissolving 2 g of SA in 100 mL of water, the 5SA solution was prepared by dissolving 5 g of SA in 100 mL of water, and the crosslinking solution was prepared by dissolving 5 g of CaCl2 in 100 mL of water. The results also showed that fungal viability was not too low in biomass-fungi mixtures that included 2SA solution and were exposed to the crosslinking solution for 1 min.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA