RESUMO
BACKGROUND: Marine seaweeds are considered as a rich source of health-promoting compounds by the food and pharmaceutical industry. Hypnea musciformis is a marine red macroalga (seaweed) that is widely distributed throughout the world, including the Mediterranean Sea. It is known to contain various bioactive compounds, including sulfated polysaccharides, flavonoids, and phlorotannins. Recent studies have investigated the potential anticancer effects of extracts from H. musciformis demonstrating their cytotoxic effects on various cancer cell lines. The anticancer effects of these extracts are thought to be due to the presence of bioactive compounds, particularly sulfated polysaccharides, which have been shown to have anticancer and immunomodulatory effects. However, further studies are needed to fully understand the molecular mechanisms that underlie their anticancer effects and to determine their potential as therapeutic agents for cancer treatment. METHODS: H. musciformis was collected from the Aegean Sea (Greece) and used for extract preparation. Transcriptome and proteome analysis was performed in liver and colon cancer human cell lines following treatment with H. musciformis seaweed extracts to characterize its anticancer effect in detail at the molecular level and to link transcriptome and proteome responses to the observed phenotypes in cancer cells. RESULTS: We have identified that treatment with the seaweed extract triggers a p53-mediated response at the transcriptional and protein level in liver cancer cells, in contrast to colon cancer cells in which the effects are more associated with metabolic changes. Furthermore, we show that in treated HepG2 liver cancer cells, p53 interacts with the chromatin of several target genes and facilitates their upregulation possibly through the recruitment of the p300 co-activator. CONCLUSIONS: Overall, the available evidence suggests that extracts from H. musciformis have the potential to serve as a source of anticancer agents in liver cancer cells mainly through activation of a p53-mediated anti-tumor response that is linked to inhibition of cellular proliferation and induction of cell death.
Assuntos
Antineoplásicos , Neoplasias do Colo , Neoplasias Intestinais , Neoplasias Hepáticas , Alga Marinha , Humanos , Proteoma , Transcriptoma , Proteína Supressora de Tumor p53/genética , Antineoplásicos/farmacologia , Polissacarídeos , Extratos Vegetais/farmacologia , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genéticaRESUMO
Gastric cancer (GC) is an asymptomatic malignancy in early stages, with an invasive and cost-ineffective diagnostic toolbox that contributes to severe global mortality rates on an annual basis. Ectopic expression of the lineage survival transcription factors (LS-TFs) GATA4 and 6 promotes stomach oncogenesis. However, LS-TFs also govern important physiological roles, hindering their direct therapeutic targeting. Therefore, their downstream target genes are particularly interesting for developing cancer-specific molecular biomarkers or therapeutic agents. In this work, we couple inducible knockdown systems with chromatin immunoprecipitation and RNA-seq to thoroughly detect and characterize direct targets of GATA-mediated transcriptional regulation in gastric cancer cells. Our experimental and computational strategy provides evidence that both factors regulate the expression of several coding and non-coding RNAs that in turn mediate for their cancer-promoting phenotypes, including but not limited to cell cycle, apoptosis, ferroptosis, and oxidative stress response. Finally, the diagnostic and prognostic potential of four metagene signatures consisting of selected GATA4/6 target transcripts is evaluated in a multi-cancer panel of ~7000 biopsies from nineteen tumor types, revealing elevated specificity for gastrointestinal tumors. In conclusion, our integrated strategy uncovers the landscape of GATA-mediated coding and non-coding transcriptional regulation, providing insights regarding their molecular and clinical function in gastric cancer.
RESUMO
The cancer genome is characterized by extensive variability, in the form of Single Nucleotide Polymorphisms (SNPs) or structural variations such as Copy Number Alterations (CNAs) across wider genomic areas. At the molecular level, most SNPs and/or CNAs reside in non-coding sequences, ultimately affecting the regulation of oncogenes and/or tumor-suppressors in a cancer-specific manner. Notably, inherited non-coding variants can predispose for cancer decades prior to disease onset. Furthermore, accumulation of additional non-coding driver mutations during progression of the disease, gives rise to genomic instability, acting as the driving force of neoplastic development and malignant evolution. Therefore, detection and characterization of such mutations can improve risk assessment for healthy carriers and expand the diagnostic and therapeutic toolbox for the patient. This review focuses on functional variants that reside in transcribed or not transcribed non-coding regions of the cancer genome and presents a collection of appropriate state-of-the-art methodologies to study them.
RESUMO
During the last decade, high-throughput sequencing efforts in the fields of transcriptomics and epigenomics have shed light on the noncoding part of the transcriptome and its potential role in human disease. Regulatory noncoding RNAs are broadly divided into short and long noncoding transcripts. The latter, also known as lncRNAs, are defined as transcripts longer than 200 nucleotides with low or no protein-coding potential. LncRNAs form a diverse group of transcripts that regulate vital cellular functions through interactions with proteins, chromatin, and even RNA itself. Notably, an important regulatory aspect of these RNA species is their association with the epigenetic machinery and the recruitment of its regulatory apparatus to specific loci, resulting in DNA methylation and/or post-translational modifications of histones. Such epigenetic modifications play a pivotal role in maintaining the active or inactive transcriptional state of chromatin and are crucial regulators of normal cellular development and tissue-specific gene expression. Evidently, aberrant expression of lncRNAs that interact with epigenetic modifiers can cause severe epigenetic disruption and is thus is closely associated with altered gene function, cellular dysregulation, and malignant transformation. Here, we survey the latest breakthroughs concerning the role of lncRNAs interacting with the epigenetic machinery in various forms of cancer.