Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Neuroimage ; 100: 498-506, 2014 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-24941453

RESUMO

Two long-standing traditions have highlighted cortical decision mechanisms in the parietal and prefrontal cortices of primates, but it has not been clear how these processes differ, or when each cortical region may influence behaviour. Recent data from ventromedial prefrontal cortex (vmPFC) and posterior parietal cortex (PPC) have suggested one possible axis on which the two decision processes might be delineated. Fast decisions may be resolved primarily by parietal mechanisms, whereas decisions made without time pressure may rely on prefrontal mechanisms. Here, we report direct evidence for such dissociation. During decisions under time pressure, a value comparison process was evident in PPC, but not in vmPFC. Value-related activity was still found in vmPFC under time pressure. However, vmPFC represented overall input value rather than compared output value. In contrast, when decisions were made without time pressure, vmPFC transitioned to encode a value comparison while value-related parameters were entirely absent from PPC. Furthermore, under time pressure, decision performance was primarily governed by PPC, while it was dominated by vmPFC at longer decision times. These data demonstrate that parallel cortical mechanisms may resolve the same choices in differing circumstances, and offer an explanation of the diverse neural signals reported in vmPFC and PPC during value-guided choice.


Assuntos
Mapeamento Encefálico/métodos , Comportamento de Escolha/fisiologia , Lobo Parietal/fisiologia , Córtex Pré-Frontal/fisiologia , Recompensa , Adolescente , Adulto , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Adulto Jovem
2.
Psychol Sci ; 25(7): 1303-13, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24815611

RESUMO

How do people sustain resources for the benefit of individuals and communities and avoid the tragedy of the commons, in which shared resources become exhausted? In the present study, we examined the role of serotonin activity and social norms in the management of depletable resources. Healthy adults, alongside social partners, completed a multiplayer resource-dilemma game in which they repeatedly harvested from a partially replenishable monetary resource. Dietary tryptophan depletion, leading to reduced serotonin activity, was associated with aggressive harvesting strategies and disrupted use of the social norms given by distributions of other players' harvests. Tryptophan-depleted participants more frequently exhausted the resource completely and also accumulated fewer rewards than participants who were not tryptophan depleted. Our findings show that rank-based social comparisons are crucial to the management of depletable resources, and that serotonin mediates responses to social norms.


Assuntos
Serotonina/fisiologia , Comportamento Social , Normas Sociais , Triptofano/fisiologia , Adulto , Feminino , Voluntários Saudáveis , Humanos , Masculino , Análise de Regressão , Recompensa , Autorrelato , Triptofano/administração & dosagem , Adulto Jovem
3.
Neuroimage ; 80: 273-82, 2013 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-23727318

RESUMO

In recent years, diffusion MRI has become an extremely important tool for studying the morphology of living brain tissue, as it provides unique insights into both its macrostructure and microstructure. Recent applications of diffusion MRI aimed to characterize the structural connectome using tractography to infer connectivity between brain regions. In parallel to the development of tractography, additional diffusion MRI based frameworks (CHARMED, AxCaliber, ActiveAx) were developed enabling the extraction of a multitude of micro-structural parameters (axon diameter distribution, mean axonal diameter and axonal density). This unique insight into both tissue microstructure and connectivity has enormous potential value in understanding the structure and organization of the brain as well as providing unique insights to abnormalities that underpin disease states. The CONNECT (Consortium Of Neuroimagers for the Non-invasive Exploration of brain Connectivity and Tracts) project aimed to combine tractography and micro-structural measures of the living human brain in order to obtain a better estimate of the connectome, while also striving to extend validation of these measurements. This paper summarizes the project and describes the perspective of using micro-structural measures to study the connectome.


Assuntos
Encéfalo/citologia , Encéfalo/fisiologia , Conectoma/métodos , Imagem de Tensor de Difusão/métodos , Aumento da Imagem/métodos , Rede Nervosa/citologia , Rede Nervosa/fisiologia , Humanos , Modelos Anatômicos , Modelos Neurológicos
4.
Nat Neurosci ; 19(10): 1280-5, 2016 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-27669988

RESUMO

Dorsal anterior cingulate cortex (dACC) carries a wealth of value-related information necessary for regulating behavioral flexibility and persistence. It signals error and reward events informing decisions about switching or staying with current behavior. During decision-making, it encodes the average value of exploring alternative choices (search value), even after controlling for response selection difficulty, and during learning, it encodes the degree to which internal models of the environment and current task must be updated. dACC value signals are derived in part from the history of recent reward integrated simultaneously over multiple time scales, thereby enabling comparison of experience over the recent and extended past. Such ACC signals may instigate attentionally demanding and difficult processes such as behavioral change via interactions with prefrontal cortex. However, the signal in dACC that instigates behavioral change need not itself be a conflict or difficulty signal.


Assuntos
Tomada de Decisões/fisiologia , Giro do Cíngulo/fisiologia , Recompensa , Animais , Atenção/fisiologia , Comportamento de Escolha/fisiologia , Humanos , Aprendizagem/fisiologia , Neurônios/fisiologia , Córtex Pré-Frontal/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA