Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 623(7988): 772-781, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37968388

RESUMO

Mouse models are a critical tool for studying human diseases, particularly developmental disorders1. However, conventional approaches for phenotyping may fail to detect subtle defects throughout the developing mouse2. Here we set out to establish single-cell RNA sequencing of the whole embryo as a scalable platform for the systematic phenotyping of mouse genetic models. We applied combinatorial indexing-based single-cell RNA sequencing3 to profile 101 embryos of 22 mutant and 4 wild-type genotypes at embryonic day 13.5, altogether profiling more than 1.6 million nuclei. The 22 mutants represent a range of anticipated phenotypic severities, from established multisystem disorders to deletions of individual regulatory regions4,5. We developed and applied several analytical frameworks for detecting differences in composition and/or gene expression across 52 cell types or trajectories. Some mutants exhibit changes in dozens of trajectories whereas others exhibit changes in only a few cell types. We also identify differences between widely used wild-type strains, compare phenotyping of gain- versus loss-of-function mutants and characterize deletions of topological associating domain boundaries. Notably, some changes are shared among mutants, suggesting that developmental pleiotropy might be 'decomposable' through further scaling of this approach. Overall, our findings show how single-cell profiling of whole embryos can enable the systematic molecular and cellular phenotypic characterization of mouse mutants with unprecedented breadth and resolution.


Assuntos
Deficiências do Desenvolvimento , Embrião de Mamíferos , Mutação , Fenótipo , Análise da Expressão Gênica de Célula Única , Animais , Camundongos , Núcleo Celular/genética , Deficiências do Desenvolvimento/genética , Deficiências do Desenvolvimento/patologia , Embrião de Mamíferos/metabolismo , Embrião de Mamíferos/patologia , Mutação com Ganho de Função , Genótipo , Mutação com Perda de Função , Modelos Genéticos , Modelos Animais de Doenças
2.
J Muscle Res Cell Motil ; 44(2): 39-52, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36131170

RESUMO

Fibrosis-driven solid organ failure is a major world-wide health burden with few therapeutic options. Spiny mice (genus: Acomys) are terrestrial mammals that regenerate severe skin wounds without fibrotic scars to evade predators. Recent studies have shown that spiny mice also regenerate acute ischemic and traumatic injuries to kidney, heart, spinal cord, and skeletal muscle. A common feature of this evolved wound healing response is a lack of formation of fibrotic scar tissue that degrades organ function, inhibits regeneration, and leads to organ failure. Complex tissue regeneration is an extremely rare property among mammalian species. In this article, we discuss the evidence that Acomys represents an emerging model organism that offers a unique opportunity for the biomedical community to investigate and clinically translate molecular mechanisms of scarless wound healing and regeneration of organ function in a mammalian species.


Assuntos
Pele , Cicatrização , Animais , Pele/metabolismo , Cicatrização/fisiologia , Murinae/fisiologia , Fibrose , Músculo Esquelético/fisiologia
3.
PLoS Genet ; 15(8): e1008243, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31386652

RESUMO

Tubulin genes encode a series of homologous proteins used to construct microtubules which are essential for multiple cellular processes. Neural development is particularly reliant on functional microtubule structures. Tubulin genes comprise a large family of genes with very high sequence similarity between multiple family members. Human genetics has demonstrated that a large spectrum of cortical malformations are associated with de novo heterozygous mutations in tubulin genes. However, the absolute requirement for many of these genes in development and disease has not been previously tested in genetic loss of function models. Here we directly test the requirement for Tuba1a, Tubb2a and Tubb2b in the mouse by deleting each gene individually using CRISPR-Cas9 genome editing. We show that loss of Tubb2a or Tubb2b does not impair survival but does lead to relatively mild cortical malformation phenotypes. In contrast, loss of Tuba1a is perinatal lethal and leads to significant forebrain dysmorphology. We also present a novel mouse ENU allele of Tuba1a with phenotypes similar to the null allele. This demonstrates the requirements for each of the tubulin genes and levels of functional redundancy are quite different throughout the gene family. The ability of the mouse to survive in the absence of some tubulin genes known to cause disease in humans suggests future intervention strategies for these devastating tubulinopathy diseases.


Assuntos
Malformações do Desenvolvimento Cortical/genética , Neurogênese/genética , Córtex Sensório-Motor/embriologia , Tubulina (Proteína)/genética , Alelos , Animais , Sistemas CRISPR-Cas , Modelos Animais de Doenças , Embrião de Mamíferos , Etilnitrosoureia/toxicidade , Feminino , Deleção de Genes , Edição de Genes , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Masculino , Malformações do Desenvolvimento Cortical/mortalidade , Malformações do Desenvolvimento Cortical/patologia , Camundongos , Camundongos Transgênicos , Microtúbulos/genética , Modelos Animais , Mutagênese/efeitos dos fármacos , Córtex Sensório-Motor/anormalidades , Especificidade da Espécie , Tubulina (Proteína)/metabolismo
4.
Mol Cell ; 51(4): 423-39, 2013 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-23973373

RESUMO

Renal ciliopathies are a leading cause of kidney failure, but their exact etiology is poorly understood. NEK8/NPHP9 is a ciliary kinase associated with two renal ciliopathies in humans and mice, nephronophthisis (NPHP) and polycystic kidney disease. Here, we identify NEK8 as a key effector of the ATR-mediated replication stress response. Cells lacking NEK8 form spontaneous DNA double-strand breaks (DSBs) that further accumulate when replication forks stall, and they exhibit reduced fork rates, unscheduled origin firing, and increased replication fork collapse. NEK8 suppresses DSB formation by limiting cyclin A-associated CDK activity. Strikingly, a mutation in NEK8 that is associated with renal ciliopathies affects its genome maintenance functions. Moreover, kidneys of NEK8 mutant mice accumulate DNA damage, and loss of NEK8 or replication stress similarly disrupts renal cell architecture in a 3D-culture system. Thus, NEK8 is a critical component of the DNA damage response that links replication stress with cystic kidney disorders.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Cílios/patologia , Quinases Ciclina-Dependentes/metabolismo , Replicação do DNA/genética , Doenças Renais Policísticas/patologia , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Fase S/fisiologia , Animais , Proteínas Mutadas de Ataxia Telangiectasia , Técnicas de Cultura de Células , Pontos de Checagem do Ciclo Celular , Proteínas de Ciclo Celular/genética , Cílios/metabolismo , Quinases Ciclina-Dependentes/genética , Dano ao DNA/genética , Instabilidade Genômica , Humanos , Camundongos , Mutação/genética , Quinases Relacionadas a NIMA , Fosforilação , Doenças Renais Policísticas/metabolismo , Proteínas Quinases/química , Proteínas Quinases/genética , Proteínas Serina-Treonina Quinases/genética , Estresse Fisiológico
5.
Mol Biol Evol ; 36(8): 1701-1710, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31004148

RESUMO

The fate of alleles in the human population is believed to be highly affected by the stochastic force of genetic drift. Estimation of the strength of natural selection in humans generally necessitates a careful modeling of drift including complex effects of the population history and structure. Protein-truncating variants (PTVs) are expected to evolve under strong purifying selection and to have a relatively high per-gene mutation rate. Thus, it is appealing to model the population genetics of PTVs under a simple deterministic mutation-selection balance, as has been proposed earlier (Cassa et al. 2017). Here, we investigated the limits of this approximation using both computer simulations and data-driven approaches. Our simulations rely on a model of demographic history estimated from 33,370 individual exomes of the Non-Finnish European subset of the ExAC data set (Lek et al. 2016). Additionally, we compared the African and European subset of the ExAC study and analyzed de novo PTVs. We show that the mutation-selection balance model is applicable to the majority of human genes, but not to genes under the weakest selection.


Assuntos
Códon sem Sentido , Deriva Genética , Modelos Genéticos , Seleção Genética , Humanos , Crescimento Demográfico
6.
J Neurosci ; 37(4): 960-971, 2017 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-28123028

RESUMO

We discovered a hypomorphic reelin (Reln) mutant with abnormal cortical lamination and no cerebellar hypoplasia. This mutant, RelnCTRdel, carries a chemically induced splice-site mutation that truncates the C-terminal region (CTR) domain of RELN protein and displays remarkably distinct phenotypes from reeler The mutant does not have an inverted cortex, but cortical neurons overmigrate and invade the marginal zone, which are characteristics similar to a phenotype seen in the cerebral cortex of Vldlrnull mice. The dentate gyrus shows a novel phenotype: the infrapyramidal blade is absent, while the suprapyramidal blade is present and laminated. Genetic epistasis analysis showed that RelnCTRdel/Apoer2null double homozygotes have phenotypes akin to those of reeler mutants, while RelnCTRdel/Vldlrnull mice do not. Given that the receptor double knock-out mice resemble reeler mutants, we infer that RelnCTRdel/Apoer2null double homozygotes have both receptor pathways disrupted. This suggests that CTR-truncation disrupts an interaction with VLDLR (very low-density lipoprotein receptor), while the APOER2 signaling pathway remains active, which accounts for the hypomorphic phenotype in RelnCTRdel mice. A RELN-binding assay confirms that CTR truncation significantly decreases RELN binding to VLDLR, but not to APOER2. Together, the in vitro and in vivo results demonstrate that the CTR domain confers receptor-binding specificity of RELN. SIGNIFICANCE STATEMENT: Reelin signaling is important for brain development and is associated with human type II lissencephaly. Reln mutations in mice and humans are usually associated with cerebellar hypoplasia. A new Reln mutant with a truncation of the C-terminal region (CTR) domain shows that Reln mutation can cause abnormal phenotypes in the cortex and hippocampus without cerebellar hypoplasia. Genetic analysis suggested that CTR truncation disrupts an interaction with the RELN receptor VLDLR (very low-density lipoprotein receptor); this was confirmed by a RELN-binding assay. This result provides a mechanistic explanation for the hypomorphic phenotype of the CTR-deletion mutant, and further suggests that Reln mutations may cause more subtle forms of human brain malformation than classic lissencephalies.


Assuntos
Moléculas de Adesão Celular Neuronais/metabolismo , Córtex Cerebral/anormalidades , Córtex Cerebral/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Hipocampo/anormalidades , Hipocampo/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Receptores de LDL/metabolismo , Serina Endopeptidases/metabolismo , Animais , Moléculas de Adesão Celular Neuronais/deficiência , Moléculas de Adesão Celular Neuronais/genética , Proteínas da Matriz Extracelular/deficiência , Proteínas da Matriz Extracelular/genética , Feminino , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Proteínas do Tecido Nervoso/deficiência , Proteínas do Tecido Nervoso/genética , Ligação Proteica/fisiologia , Receptores de LDL/genética , Proteína Reelina , Serina Endopeptidases/deficiência , Serina Endopeptidases/genética
7.
Hum Mol Genet ; 25(11): 2245-2255, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27053712

RESUMO

Polycystic kidney diseases (PKDs) comprise a subgroup of ciliopathies characterized by the formation of fluid-filled kidney cysts and progression to end-stage renal disease. A mechanistic understanding of cystogenesis is crucial for the development of viable therapeutic options. Here, we identify CDK5, a kinase active in post mitotic cells, as a new and important mediator of PKD progression. We show that long-lasting attenuation of PKD in the juvenile cystic kidneys (jck) mouse model of nephronophthisis by pharmacological inhibition of CDK5 using either R-roscovitine or S-CR8 is accompanied by sustained shortening of cilia and a more normal epithelial phenotype, suggesting this treatment results in a reprogramming of cellular differentiation. Also, a knock down of Cdk5 in jck cells using small interfering RNA results in significant shortening of ciliary length, similar to what we observed with R-roscovitine. Finally, conditional inactivation of Cdk5 in the jck mice significantly attenuates cystic disease progression and is associated with shortening of ciliary length as well as restoration of cellular differentiation. Our results suggest that CDK5 may regulate ciliary length by affecting tubulin dynamics via its substrate collapsin response mediator protein 2. Taken together, our data support therapeutic approaches aimed at restoration of ciliogenesis and cellular differentiation as a promising strategy for the treatment of renal cystic diseases.


Assuntos
Cílios/efeitos dos fármacos , Quinase 5 Dependente de Ciclina/genética , Falência Renal Crônica/tratamento farmacológico , Doenças Renais Policísticas/tratamento farmacológico , Animais , Diferenciação Celular/efeitos dos fármacos , Cílios/patologia , Quinase 5 Dependente de Ciclina/antagonistas & inibidores , Modelos Animais de Doenças , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Rim/efeitos dos fármacos , Rim/patologia , Falência Renal Crônica/genética , Falência Renal Crônica/patologia , Camundongos , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Doenças Renais Policísticas/genética , Doenças Renais Policísticas/patologia , Purinas/administração & dosagem , Roscovitina , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo
8.
Mamm Genome ; 27(5-6): 191-9, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27114383

RESUMO

We have previously demonstrated that a locus on proximal Chr 4 modifies disease severity in the juvenile cystic kidney (jck) mouse, a model of polycystic kidney disease (PKD) that carries a mutation of the Nek8 serine-threonine kinase. In this study, we used QTL analysis of independently constructed B6.D2 congenic lines to confirm this and showed that this locus has a highly significant effect. We constructed sub-congenic lines to more specifically localize the modifier and have determined it resides in a 3.2 Mb interval containing 28 genes. These include Invs and Anks6, which are both excellent candidates for the modifier as mutations in these genes result in PKD and both genes are known to genetically and physically interact with Nek8. However, examination of strain-specific DNA sequence and kidney expression did not reveal clear differences that might implicate either gene as a modifier of PKD severity. The fact that our high-resolution analysis did not yield an unambiguous result highlights the challenge of establishing the causality of strain-specific variants as genetic modifiers, and suggests that alternative strategies be considered.


Assuntos
Proteínas de Transporte/genética , Quinases Relacionadas a NIMA/genética , Doenças Renais Policísticas/genética , Fatores de Transcrição/genética , Animais , Mapeamento Cromossômico , Modelos Animais de Doenças , Humanos , Rim/patologia , Camundongos , Mutação , Doenças Renais Policísticas/patologia , Índice de Gravidade de Doença
9.
Cereb Cortex ; 25(1): 167-79, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23968836

RESUMO

Formation of a 6-layered cortical plate and axon tract patterning are key features of cerebral cortex development. Abnormalities of these processes may be the underlying cause for a range of functional disabilities seen in human neurodevelopmental disorders. To identify mouse mutants with defects in cortical lamination or corticofugal axon guidance, N-ethyl-N-nitrosourea (ENU) mutagenesis was performed using mice expressing LacZ reporter genes in layers II/III and V of the cortex (Rgs4-lacZ) or in corticofugal axons (TAG1-tau-lacZ). Four lines with abnormal cortical lamination have been identified. One of these was a splice site mutation in reelin (Reln) that results in a premature stop codon and the truncation of the C-terminal region (CTR) domain of reelin. Interestingly, this novel allele of Reln did not display cerebellar malformation or ataxia, and this is the first report of a Reln mutant without a cerebellar defect. Four lines with abnormal cortical axon development were also identified, one of which was found by whole-genome resequencing to carry a mutation in Lrp2. These findings demonstrated that the application of ENU mutagenesis to mice carrying transgenic reporters marking cortical anatomy is a sensitive and specific method to identify mutations that disrupt patterning of the developing brain.


Assuntos
Córtex Cerebral/anormalidades , Córtex Cerebral/patologia , Etilnitrosoureia/toxicidade , Testes Genéticos/métodos , Malformações do Desenvolvimento Cortical/genética , Mutagênicos/toxicidade , Mutação , Animais , Axônios/efeitos dos fármacos , Axônios/patologia , Moléculas de Adesão Celular Neuronais/genética , Córtex Cerebral/efeitos dos fármacos , Proteínas da Matriz Extracelular/genética , Feminino , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Hidrocefalia/genética , Hidrocefalia/patologia , Proteína-2 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Proteínas do Tecido Nervoso/genética , Proteína Reelina , Serina Endopeptidases/genética
10.
Genesis ; 53(9): 573-582, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26177923

RESUMO

Grainyhead-like genes are part of a highly conserved gene family that play a number of roles in ectoderm development and maintenance in mammals. Here we identify a novel allele of Grhl2, cleft-face 3 (clft3), in a mouse line recovered from an ENU mutagenesis screen for organogenesis defects. Homozygous clft3 mutants have a number of phenotypes in common with other alleles of Grhl2. We note a significant effect of genetic background on the clft3 phenotype. One of these is a reduction in size of the telencephalon where we find abnormal patterns of neural progenitor mitosis and apoptosis in mutant brains. Interestingly, Grhl2 is not expressed in the developing forebrain, suggesting this is a survival factor for neural progenitors exerting a paracrine effect on the neural tissue from the overlying ectoderm where Grhl2 is highly expressed. genesis 53:573-582, 2015. © 2015 Wiley Periodicals, Inc.

11.
BMC Genomics ; 16: 913, 2015 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-26552429

RESUMO

BACKGROUND: The development of powerful new methods for DNA sequencing enable the discovery of sequence variants, their utilization for the mapping of mutant loci, and the identification of causal variants in a single step. We have applied this approach for the analysis of ENU-mutagenized mice maintained on an inbred background. RESULTS: We ascertained ENU-induced variants in four different phenotypically mutant lines. These were then used as informative markers for positional cloning of the mutated genes. We tested both whole genome (WGS) and whole exome (WES) datasets. CONCLUSION: Both approaches were successful as a means to localize a region of homozygosity, as well as identifying mutations of candidate genes, which could be individually assessed. As expected, the WGS strategy was more reliable, since many more ENU-induced variants were ascertained.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala/métodos , Animais , Exoma/genética , Feminino , Masculino , Camundongos , Mutação/genética , Linhagem
12.
Genome Res ; 22(8): 1541-8, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22555591

RESUMO

Genetic mapping of mutations in model systems has facilitated the identification of genes contributing to fundamental biological processes including human diseases. However, this approach has historically required the prior characterization of informative markers. Here we report a fast and cost-effective method for genetic mapping using next-generation sequencing that combines single nucleotide polymorphism discovery, mutation localization, and potential identification of causal sequence variants. In contrast to prior approaches, we have developed a hidden Markov model to narrowly define the mutation area by inferring recombination breakpoints of chromosomes in the mutant pool. In addition, we created an interactive online software resource to facilitate automated analysis of sequencing data and demonstrate its utility in the zebrafish and mouse models. Our novel methodology and online tools will make next-generation sequencing an easily applicable resource for mutation mapping in all model systems.


Assuntos
Análise Mutacional de DNA/métodos , Software , Peixe-Zebra/genética , Alelos , Animais , Mapeamento Cromossômico/métodos , Cromossomos/genética , Cruzamentos Genéticos , Feminino , Frequência do Gene , Genômica/métodos , Homozigoto , Masculino , Cadeias de Markov , Camundongos , Camundongos Endogâmicos C57BL , Mutação , Polimorfismo de Nucleotídeo Único , Recombinação Genética , Fatores de Tempo
13.
J Am Soc Nephrol ; 25(10): 2201-12, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24700869

RESUMO

Renal cystic diseases are a leading cause of renal failure. Mutations associated with renal cystic diseases reside in genes encoding proteins that localize to primary cilia. These cystoproteins can disrupt ciliary structure or cilia-mediated signaling, although molecular mechanisms connecting cilia function to renal cystogenesis remain unclear. The ciliary gene, Thm1(Ttc21b), negatively regulates Hedgehog signaling and is most commonly mutated in ciliopathies. We report that loss of murine Thm1 causes cystic kidney disease, with persistent proliferation of renal cells, elevated cAMP levels, and enhanced expression of Hedgehog signaling genes. Notably, the cAMP-mediated cystogenic potential of Thm1-null kidney explants was reduced by genetically deleting Gli2, a major transcriptional activator of the Hedgehog pathway, or by culturing with small molecule Hedgehog inhibitors. These Hedgehog inhibitors acted independently of protein kinase A and Wnt inhibitors. Furthermore, simultaneous deletion of Gli2 attenuated the renal cystic disease associated with deletion of Thm1. Finally, transcripts of Hedgehog target genes increased in cystic kidneys of two other orthologous mouse mutants, jck and Pkd1, and Hedgehog inhibitors reduced cystogenesis in jck and Pkd1 cultured kidneys. Thus, enhanced Hedgehog activity may have a general role in renal cystogenesis and thereby present a novel therapeutic target.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Modelos Animais de Doenças , Proteínas Hedgehog/metabolismo , Doenças Renais Císticas/metabolismo , Animais , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Feminino , Proteínas Hedgehog/antagonistas & inibidores , Técnicas In Vitro , Doenças Renais Císticas/genética , Masculino , Camundongos , Camundongos Knockout , Canais de Cátion TRPP/genética , Proteínas Wnt/metabolismo
14.
Nature ; 454(7207): 961-7, 2008 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-18719582

RESUMO

Brown fat can increase energy expenditure and protect against obesity through a specialized program of uncoupled respiration. Here we show by in vivo fate mapping that brown, but not white, fat cells arise from precursors that express Myf5, a gene previously thought to be expressed only in the myogenic lineage. We also demonstrate that the transcriptional regulator PRDM16 (PRD1-BF1-RIZ1 homologous domain containing 16) controls a bidirectional cell fate switch between skeletal myoblasts and brown fat cells. Loss of PRDM16 from brown fat precursors causes a loss of brown fat characteristics and promotes muscle differentiation. Conversely, ectopic expression of PRDM16 in myoblasts induces their differentiation into brown fat cells. PRDM16 stimulates brown adipogenesis by binding to PPAR-gamma (peroxisome-proliferator-activated receptor-gamma) and activating its transcriptional function. Finally, Prdm16-deficient brown fat displays an abnormal morphology, reduced thermogenic gene expression and elevated expression of muscle-specific genes. Taken together, these data indicate that PRDM16 specifies the brown fat lineage from a progenitor that expresses myoblast markers and is not involved in white adipogenesis.


Assuntos
Adipócitos Marrons/metabolismo , Diferenciação Celular , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Músculo Esquelético/metabolismo , Fatores de Transcrição/metabolismo , Adipócitos Marrons/citologia , Adipócitos Brancos/metabolismo , Tecido Adiposo Marrom/citologia , Animais , Células COS , Diferenciação Celular/genética , Linhagem Celular , Chlorocebus aethiops , Proteínas de Ligação a DNA/genética , Masculino , Camundongos , Desenvolvimento Muscular/genética , Músculo Esquelético/citologia , Músculo Esquelético/crescimento & desenvolvimento , Fator Regulador Miogênico 5/genética , PPAR gama/genética , Fatores de Transcrição/genética
15.
Proc Natl Acad Sci U S A ; 108(31): 12787-92, 2011 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-21768379

RESUMO

There is a wide variation among humans and mice in airway hyperresponsiveness (AHR) in the absence of allergen sensitization, i.e., naïve AHR. Because mast cell (MC) activation is thought to mediate AHR in atopic asthmatic subjects, we asked whether MCs mediate naïve AHR in A/J mice. We generated an A/J congenic strain lacking c-Kit by introgression of the Wv mutation, which resulted in the elimination of MCs and the abrogation of naïve AHR. Imatinib, which disrupts Kit signaling, also abrogated AHR in A/J mice. Remarkably, introduction of the Vga9 Mitf mutation into the A/J background resulted in the ablation of MCs but did not ameliorate AHR. These results indicate that c-Kit is required for development of AHR in an MC-independent fashion.


Assuntos
Hiper-Reatividade Brônquica/genética , Mastócitos/metabolismo , Proteínas Proto-Oncogênicas c-kit/genética , Transdução de Sinais/genética , Transferência Adotiva , Animais , Benzamidas , Hiper-Reatividade Brônquica/imunologia , Contagem de Células , Células Cultivadas , Feminino , Mesilato de Imatinib , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Pulmão/patologia , Masculino , Mastócitos/patologia , Cloreto de Metacolina/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos , Camundongos Knockout , Linhagem , Piperazinas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Pirimidinas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Baço/efeitos dos fármacos , Baço/metabolismo , Baço/patologia , Traqueia/efeitos dos fármacos , Traqueia/metabolismo , Traqueia/patologia
16.
PLoS Genet ; 7(9): e1002224, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21912524

RESUMO

We describe the rudolph mouse, a mutant with striking defects in both central nervous system and skeletal development. Rudolph is an allele of the cholesterol biosynthetic enzyme, hydroxysteroid (17-beta) dehydrogenase 7, which is an intriguing finding given the recent implication of oxysterols in mediating intracellular Hedgehog (Hh) signaling. We see an abnormal sterol profile and decreased Hh target gene induction in the rudolph mutant, both in vivo and in vitro. Reduced Hh signaling has been proposed to contribute to the phenotypes of congenital diseases of cholesterol metabolism. Recent in vitro and pharmacological data also indicate a requirement for intracellular cholesterol synthesis for proper regulation of Hh activity via Smoothened. The data presented here are the first in vivo genetic evidence supporting both of these hypotheses, revealing a role for embryonic cholesterol metabolism in both CNS development and normal Hh signaling.


Assuntos
17-Hidroxiesteroide Desidrogenases/genética , Colesterol/metabolismo , Proteínas Hedgehog/metabolismo , Prosencéfalo/anormalidades , 17-Hidroxiesteroide Desidrogenases/metabolismo , Animais , Desenvolvimento Ósseo/genética , Colesterol/genética , Etilnitrosoureia/farmacologia , Camundongos , Camundongos Mutantes , Mutagênese , Mutação , Prosencéfalo/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais , Receptor Smoothened
17.
J Am Soc Nephrol ; 24(1): 100-12, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23274954

RESUMO

A missense mutation in mouse Nek8, which encodes a ciliary kinase, produces the juvenile cystic kidneys (jck) model of polycystic kidney disease, but the functions of Nek8 are incompletely understood. Here, we generated a Nek8-null allele and found that homozygous mutant mice die at birth and exhibit randomization of left-right asymmetry, cardiac anomalies, and glomerular kidney cysts. The requirement for Nek8 in left-right patterning is conserved, as knockdown of the zebrafish ortholog caused randomized heart looping. Ciliogenesis was intact in Nek8-deficient embryos and cells, but we observed misexpression of left-sided marker genes early in development, suggesting that nodal ciliary signaling was perturbed. We also generated jck/Nek8 compound heterozygotes; these mutants developed less severe cystic disease than jck homozygotes and provided genetic evidence that the jck allele may encode a gain-of-function protein. Notably, NEK8 and polycystin-2 (PC2) proteins interact, and we found that Nek8(-/-) and Pkd2(-/-) embryonic phenotypes are strikingly similar. Nek8-deficient embryos and cells did express PC2 normally, which localized properly to the cilia. However, similar to cells lacking PC2, NEK8-depleted inner medullary collecting duct cells exhibited a defective response to fluid shear, suggesting that NEK8 may play a role in mediating PC2-dependent signaling.


Assuntos
Padronização Corporal , Cílios/fisiologia , Doenças Renais Policísticas/genética , Proteínas Serina-Treonina Quinases/genética , Animais , Biomarcadores/metabolismo , Modelos Animais de Doenças , Feminino , Cardiopatias Congênitas/embriologia , Heterozigoto , Homozigoto , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Quinases Relacionadas a NIMA , Fenótipo , Proteínas Serina-Treonina Quinases/metabolismo , Canais de Cátion TRPP/metabolismo , Peixe-Zebra
18.
N Engl J Med ; 362(3): 206-16, 2010 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-20089971

RESUMO

BACKGROUND: Establishing the genetic basis of phenotypes such as skeletal dysplasia in model organisms can provide insights into biologic processes and their role in human disease. METHODS: We screened mutagenized mice and observed a neonatal lethal skeletal dysplasia with an autosomal recessive pattern of inheritance. Through genetic mapping and positional cloning, we identified the causative mutation. RESULTS: Affected mice had a nonsense mutation in the thyroid hormone receptor interactor 11 gene (Trip11), which encodes the Golgi microtubule-associated protein 210 (GMAP-210); the affected mice lacked this protein. Golgi architecture was disturbed in multiple tissues, including cartilage. Skeletal development was severely impaired, with chondrocytes showing swelling and stress in the endoplasmic reticulum, abnormal cellular differentiation, and increased cell death. Golgi-mediated glycosylation events were altered in fibroblasts and chondrocytes lacking GMAP-210, and these chondrocytes had intracellular accumulation of perlecan, an extracellular matrix protein, but not of type II collagen or aggrecan, two other extracellular matrix proteins. The similarities between the skeletal and cellular phenotypes in these mice and those in patients with achondrogenesis type 1A, a neonatal lethal form of skeletal dysplasia in humans, suggested that achondrogenesis type 1A may be caused by GMAP-210 deficiency. Sequence analysis revealed loss-of-function mutations in the 10 unrelated patients with achondrogenesis type 1A whom we studied. CONCLUSIONS: GMAP-210 is required for the efficient glycosylation and cellular transport of multiple proteins. The identification of a mutation affecting GMAP-210 in mice, and then in humans, as the cause of a lethal skeletal dysplasia underscores the value of screening for abnormal phenotypes in model organisms and identifying the causative mutations.


Assuntos
Condrócitos/citologia , Códon sem Sentido , Proteínas Nucleares/genética , Osteocondrodisplasias/genética , Animais , Diferenciação Celular , Proliferação de Células , Proteínas do Citoesqueleto , Retículo Endoplasmático/ultraestrutura , Genes Recessivos , Glicosilação , Complexo de Golgi/ultraestrutura , Humanos , Camundongos , Camundongos Mutantes , Proteínas Nucleares/deficiência , Fenótipo , Polimorfismo de Nucleotídeo Único , Processamento de Proteína Pós-Traducional/fisiologia , Análise de Sequência de DNA
19.
Proc Natl Acad Sci U S A ; 107(43): 18499-504, 2010 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-20937855

RESUMO

Cilia are essential for normal organ function and developmental patterning, but their role in injury and regeneration responses is unknown. To probe the role of cilia in injury, we analyzed the function of foxj1, a transcriptional regulator of cilia genes, in response to tissue damage and renal cyst formation. Zebrafish foxj1a, but not foxj1b, was rapidly induced in response to epithelial distension and stretch, kidney cyst formation, acute kidney injury by gentamicin, and crush injury in spinal cord cells. Obstruction-induced up-regulation of foxj1a was not inhibited by cycloheximide, identifying foxj1a as a primary response gene to epithelial injury. Foxj1 was also dramatically up-regulated in murine cystic kidney disease epithelia [jck/jck (nek8) and Ift88Tg737Rpw(-/-)] as well as in response to kidney ischemia-reperfusion injury. Obstruction of the zebrafish pronephric tubule caused a rapid increase in cilia beat rate that correlated tightly with expanded tubule diameter and epithelial stretch. Zebrafish foxj1a was specifically required for cilia motility. Enhanced foxj1a expression in obstructed tubules induced cilia motility target genes efhc1, tektin-1, and dnahc9. foxj1a-deficient embryos failed to up-regulate efhc1, tektin-1, and dnahc9 and could not maintain enhanced cilia beat rates after obstruction, identifying an essential role for foxj1 in modulating cilia function after injury. These studies reveal that activation of a Foxj1 transcriptional network of ciliogenic genes is an evolutionarily conserved response to multiple forms of tissue damage and highlight enhanced cilia function as a previously uncharacterized component of organ homeostasis.


Assuntos
Cílios/fisiologia , Fatores de Transcrição Forkhead/fisiologia , Ferimentos e Lesões/fisiopatologia , Proteínas de Peixe-Zebra/fisiologia , Animais , Sequência de Bases , Primers do DNA/genética , Epitélio/lesões , Epitélio/fisiopatologia , Fatores de Transcrição Forkhead/genética , Expressão Gênica , Rim/embriologia , Rim/lesões , Rim/fisiopatologia , Camundongos , Traumatismos da Medula Espinal/genética , Traumatismos da Medula Espinal/fisiopatologia , Estresse Mecânico , Peixe-Zebra/genética , Peixe-Zebra/fisiologia , Proteínas de Peixe-Zebra/genética
20.
Nat Genet ; 30(2): 185-9, 2002 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-11818962

RESUMO

Treatment with N-ethyl-N-nitrosourea (ENU) efficiently generates single-nucleotide mutations in mice. Along with the renewed interest in this approach, much attention has been given recently to large screens with broad aims; however, more finely focused studies have proven very productive as well. Here we show how mutagenesis together with genetic mapping can facilitate the rapid characterization of recessive loci required for normal embryonic development. We screened third-generation progeny of mutagenized mice at embryonic day (E) 18.5 for abnormalities of organogenesis. We ascertained 15 monogenic mutations in the 54 families that were comprehensively analyzed. We carried out the experiment as an outcross, which facilitated the genetic mapping of the mutations by haplotype analysis. We mapped seven of the mutations and identified the affected locus in two lines. Using a hierarchical approach, it is possible to maximize the efficiency of this analysis so that it can be carried out easily with modest infrastructure and resources.


Assuntos
Desenvolvimento Embrionário e Fetal/genética , Etilnitrosoureia/toxicidade , Mutagênese , Mutação , Animais , Sequência de Bases , Mapeamento Cromossômico , DNA/genética , Análise Mutacional de DNA , Feminino , Genes Recessivos , Haplótipos , Masculino , Camundongos , Camundongos Endogâmicos A , Camundongos Endogâmicos BALB C , Fenótipo , Gravidez
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA