Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nanotechnology ; 27(3): 035201, 2016 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-26637104

RESUMO

Spin injection and detection in Co60Fe40-based all-metallic lateral spin valves have been studied at both room and low temperatures. The obtained spin signals amplitudes have been compared to those of identical Ni80Fe20-based devices. The replacement of Ni80Fe20 by CoFe allows increasing the spin signal amplitude by up to one order of magnitude, thus reaching 50 mΩ at room temperature. The spin signal dependence with the distance between the ferromagnetic electrodes has been analyzed using both a 1D spin-transport model and finite element method simulations. The enhancement of the spin signal amplitude when using CoFe electrodes can be explained by a higher effective polarization.

2.
Sci Rep ; 7(1): 9553, 2017 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-28842573

RESUMO

In this letter, we discuss the shift observed in spintronics from the current-perpendicular-to-plane geometry towards lateral geometries, illustrating the new opportunities offered by this configuration. Using CoFe-based all-metallic LSVs, we show that giant magnetoresistance variations of more than 10% can be obtained, competitive with the current-perpendicular-to-plane giant magnetoresistance. We then focus on the interest of being able to tailor freely the geometries. On the one hand, by tailoring the non-magnetic parts, we show that it is possible to enhance the spin signal of giant magnetoresistance structures. On the other hand, we show that tailoring the geometry of lateral structures allows creating a multilevel memory with high spin signals, by controlling the coercivity and shape anisotropy of the magnetic parts. Furthermore, we study a new device in which the magnetization direction of a nanodisk can be detected. We thus show that the ability to control the magnetic properties can be used to take advantage of all the spin degrees of freedom, which are usually occulted in current-perpendicular-to-plane devices. This flexibility of lateral structures relatively to current-perpendicular-to-plane structures is thus found to offer a new playground for the development of spintronic applications.

3.
Nat Commun ; 7: 13857, 2016 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-27976747

RESUMO

The spin-orbit coupling relating the electron spin and momentum allows for spin generation, detection and manipulation. It thus fulfils the three basic functions of the spin field-effect transistor. However, the spin Hall effect in bulk germanium is too weak to produce spin currents, whereas large Rashba effect at Ge(111) surfaces covered with heavy metals could generate spin-polarized currents. The Rashba spin splitting can actually be as large as hundreds of meV. Here we show a giant spin-to-charge conversion in metallic states at the Fe/Ge(111) interface due to the Rashba coupling. We generate very large charge currents by direct spin pumping into the interface states from 20 K to room temperature. The presence of these metallic states at the Fe/Ge(111) interface is demonstrated by first-principles electronic structure calculations. By this, we demonstrate how to take advantage of the spin-orbit coupling for the development of the spin field-effect transistor.

4.
J Phys Condens Matter ; 28(16): 165801, 2016 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-26988255

RESUMO

We report on the spin transport properties in p-doped germanium (Ge-p) using low temperature magnetoresistance measurements, electrical spin injection from a ferromagnetic metal and the spin pumping-inverse spin Hall effect method. Electrical spin injection is carried out using three-terminal measurements and the Hanle effect. In the 2-20 K temperature range, weak antilocalization and the Hanle effect provide the same spin lifetime in the germanium valence band (≈1 ps) in agreement with predicted values and previous optical measurements. These results, combined with dynamical spin injection by spin pumping and the inverse spin Hall effect, demonstrate successful spin accumulation in Ge. We also estimate the spin Hall angle θ(SHE) in Ge-p (6-7 x 10(-4) at room temperature, pointing out the essential role of ionized impurities in spin dependent scattering.

5.
Sci Rep ; 4: 6509, 2014 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-25270773

RESUMO

The probability laws associated to domain wall depinning under fields and currents have been studied in NiFe and FePt nanowires. Three basic domain wall depinning processes, associated to different potential landscapes, are found to appear identically in those systems with very different anisotropies. We show that these processes constitute the building blocks of any complex depinning mechanism. A Markovian analysis is proposed, that provides a unified picture of the depinning mechanism and an insight into the pinning potential landscape.

6.
Phys Rev Lett ; 88(15): 157201, 2002 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-11955215

RESUMO

The resistance generated by individual domain walls is measured in a FePd nanostructure. Combining transport and magnetic imaging measurements, the intrinsic domain wall resistance is quantified. It is found positive and of a magnitude consistent with that predicted by models based on spin scattering effects within the walls. This magnetoresistance at a nanometer scale allows a direct counting of the number of walls inside the nanostructure. The effect is then used to measure changes in the magnetic configuration of submicron stripes under application of a magnetic field.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA