Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Chemistry ; 30(50): e202401327, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-38941241

RESUMO

The multiplexity of cancer has rendered it the second leading cause of mortality worldwide and theragnostic prodrugs have gained popularity in recent years as a means of treatment. Theragnostic prodrugs enable the simultaneous diagnosis and therapy of tumors via high-precision real-time drug release monitoring. Herein, we report the development of the small theragnostic prodrug GF, based on the nucleoside anticancer agent gemcitabine and the fluorescent dye 5(6)-carboxyfluorescein. We have successfully demonstrated its efficient internalization in tumor cells, showing localization throughout both the early and late endocytic pathways. Its mechanism of cell internalization was evaluated, confirming its independence from nucleoside transporters. Its cellular localization via confocal microscopy revealed a clathrin-mediated endocytosis mechanism, distinguishing it from analogous compounds studied previously. Furthermore, GF exhibited stability across various pH values and in human blood plasma. Subsequently, its in vitro cytotoxicity was assessed in three human cancer cell lines (A549, U87 and T98). Additionally, its pharmacokinetic profile in mice was investigated and the consequent drug release was monitored. Finally, its in vivo visualization was accomplished in zebrafish xenotransplantation models and its in vivo efficacy was evaluated in A549 xenografts. The results unveiled an intriguing efficacy profile, positioning GF as a compelling candidate warranting further investigation.


Assuntos
Desoxicitidina , Corantes Fluorescentes , Gencitabina , Pró-Fármacos , Peixe-Zebra , Desoxicitidina/análogos & derivados , Desoxicitidina/química , Desoxicitidina/farmacologia , Pró-Fármacos/química , Pró-Fármacos/farmacologia , Humanos , Animais , Camundongos , Corantes Fluorescentes/química , Linhagem Celular Tumoral , Endocitose/efeitos dos fármacos , Fluoresceínas/química , Antineoplásicos/química , Antineoplásicos/farmacologia , Proteínas de Transporte de Nucleosídeos/metabolismo , Liberação Controlada de Fármacos
2.
Am J Physiol Heart Circ Physiol ; 322(1): H8-H24, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34767486

RESUMO

Protein tyrosine phosphatase receptor-ζ1 (PTPRZ1) is a transmembrane tyrosine phosphatase receptor highly expressed in embryonic stem cells. In the present work, gene expression analyses of Ptprz1-/- and Ptprz1+/+ mice endothelial cells and hearts pointed to an unidentified role of PTPRZ1 in heart development through the regulation of heart-specific transcription factor genes. Echocardiography analysis in mice identified that both systolic and diastolic functions are affected in Ptprz1-/- compared with Ptprz1+/+ hearts, based on a dilated left ventricular (LV) cavity, decreased ejection fraction and fraction shortening, and increased angiogenesis in Ptprz1-/- hearts, with no signs of cardiac hypertrophy. A zebrafish ptprz1-/- knockout was also generated and exhibited misregulated expression of developmental cardiac markers, bradycardia, and defective heart morphogenesis characterized by enlarged ventricles and defected contractility. A selective PTPRZ1 tyrosine phosphatase inhibitor affected zebrafish heart development and function in a way like what is observed in the ptprz1-/- zebrafish. The same inhibitor had no effect in the function of the adult zebrafish heart, suggesting that PTPRZ1 is not important for the adult heart function, in line with data from the human cell atlas showing very low to negligible PTPRZ1 expression in the adult human heart. However, in line with the animal models, Ptprz1 was expressed in many different cell types in the human fetal heart, such as valvar, fibroblast-like, cardiomyocytes, and endothelial cells. Collectively, these data suggest that PTPRZ1 regulates cardiac morphogenesis in a way that subsequently affects heart function and warrant further studies for the involvement of PTPRZ1 in idiopathic congenital cardiac pathologies.NEW & NOTEWORTHY Protein tyrosine phosphatase receptor ζ1 (PTPRZ1) is expressed in fetal but not adult heart and seems to affect heart development. In both mouse and zebrafish animal models, loss of PTPRZ1 results in dilated left ventricle cavity, decreased ejection fraction, and fraction shortening, with no signs of cardiac hypertrophy. PTPRZ1 also seems to be involved in atrioventricular canal specification, outflow tract morphogenesis, and heart angiogenesis. These results suggest that PTPRZ1 plays a role in heart development and support the hypothesis that it may be involved in congenital cardiac pathologies.


Assuntos
Coração/embriologia , Miocárdio/metabolismo , Organogênese , Proteínas Tirosina Fosfatases Classe 5 Semelhantes a Receptores/genética , Proteínas de Peixe-Zebra/genética , Animais , Deleção de Genes , Camundongos , Proteínas Tirosina Fosfatases Classe 5 Semelhantes a Receptores/metabolismo , Peixe-Zebra , Proteínas de Peixe-Zebra/metabolismo
3.
Int J Mol Sci ; 21(10)2020 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-32466222

RESUMO

In the era of single-cell analysis, one always has to keep in mind the systemic nature of various diseases and how these diseases could be optimally studied. Comorbidities of the heart in neurological diseases as well as of the brain in cardiovascular diseases are prevalent, but how interactions in the brain-heart axis affect disease development and progression has been poorly addressed. Several brain and heart diseases share common risk factors. A better understanding of the brain-heart interactions will provide better insights for future treatment and personalization of healthcare, for heart failure patients' benefit notably. We review here emerging evidence that studying noncoding RNAs in the brain-heart axis could be pivotal in understanding these interactions. We also introduce the Special Issue of the International Journal of Molecular Sciences RNAs in Brain and Heart Diseases-EU-CardioRNA COST Action.


Assuntos
Encefalopatias/metabolismo , Ácidos Nucleicos Livres/metabolismo , Cardiopatias/metabolismo , RNA não Traduzido/metabolismo , Animais , Biomarcadores/sangue , Encefalopatias/sangue , Ácidos Nucleicos Livres/sangue , Cardiopatias/sangue , Humanos , RNA não Traduzido/sangue , Transdução de Sinais
4.
Molecules ; 25(22)2020 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-33182581

RESUMO

Diabetes mellitus is a disease characterized by persistent high blood glucose levels and accompanied by impaired metabolic pathways. In this study, we used zebrafish to investigate the effect of crocins isolated from Crocus sativus L., on the control of glucose levels and pancreatic ß-cells. Embryos were exposed to an aqueous solution of crocins and whole embryo glucose levels were measured at 48 h post-treatment. We showed that the application of crocins reduces zebrafish embryo glucose levels and enhances insulin expression. We also examined whether crocins are implicated in the metabolic pathway of gluconeogenesis. We showed that following a single application of crocins and glucose level reduction, the expression of phosphoenolpyruvate carboxykinase1 (pck1), a key gene involved in glucose metabolism, is increased. We propose a putative role for the crocins in glucose metabolism and insulin management.


Assuntos
Carotenoides/farmacologia , Crocus/química , Hiperglicemia/tratamento farmacológico , Animais , Animais Geneticamente Modificados , Glicemia/metabolismo , Carotenoides/análise , Gluconeogênese , Glucose/metabolismo , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Íons , Pâncreas/embriologia , Pâncreas/metabolismo , Fosfoenolpiruvato Carboxiquinase (GTP)/metabolismo , Extratos Vegetais/farmacologia , Peixe-Zebra
5.
Cell Tissue Res ; 378(2): 279-288, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31129720

RESUMO

Zebrafish (Danio rerio) is widely used as an animal model to understand the pathophysiology of cardiovascular diseases. Here, we present the adult cardiac phenotype of weak atrium, myh6-/-, which carry mutations in the zebrafish atrial myosin heavy chain. Homozygous mutants survive to adulthood and are fertile despite their initial weak atrial beat. In adult mutants, the atrium remains hypoplastic and shows elastin deposition while mutant ventricles exhibit increased size. In mammals, hypertrophy is the most common mechanism resulting in cardiomegaly. Using immunohistochemistry and confocal microscopy to measure cardiomyocyte cell size, density and proliferation, we show that the enlargement of the myh6-/- ventricle is predominantly due to hyperplasia. However, we identified similar transcriptional profiles to the mammalian hypertrophy response via RT-PCR of the hyperplastic ventricles. Furthermore, we show activation of the ER-stress pathway by western blot analysis. In conclusion, we can assume, based on our model, that molecular signaling pathways associated with hypertrophy in mammals, in combination with ER-stress activation, result in hyperplasia in zebrafish. In addition, to our knowledge, this is the first time to report elastin deposition in the atrium.


Assuntos
Modelos Animais de Doenças , Elastina/metabolismo , Átrios do Coração , Hiperplasia/metabolismo , Hipertrofia Ventricular Esquerda/patologia , Hipertrofia Ventricular Direita/patologia , Cadeias Pesadas de Miosina/genética , Proteínas de Peixe-Zebra/genética , Animais , Átrios do Coração/metabolismo , Átrios do Coração/patologia , Mutação , Miócitos Cardíacos/patologia , Peixe-Zebra
6.
Hum Mol Genet ; 25(8): 1528-42, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-27008886

RESUMO

Charcot-Marie-Tooth (CMT) disease is a genetically heterogeneous group of peripheral neuropathies. Mutations in several aminoacyl-tRNA synthetase (ARS) genes have been implicated in inherited CMT disease. There are 12 reported CMT-causing mutations dispersed throughout the primary sequence of the human glycyl-tRNA synthetase (GARS). While there is strong genetic evidence linking GARS mutations to CMT disease, the molecular pathology underlying the neuromuscular and sensory phenotypes is still not fully understood. In particular, it is unclear whether the mutations result in a toxic gain of function, a partial loss of activity related to translation, or a combination of these mechanisms. We identified a zebrafish allele of gars (gars(s266)). Homozygous mutant embryos carry a C->A transversion, that changes a threonine to a lysine, in a residue next to a CMT-associated human mutation. We show that the neuromuscular phenotype observed in animals homozygous for T209K Gars (T130K in GARS) is due to a loss of dimerization of the mutated protein. Furthermore, we show that the loss of function, dimer-deficient and human disease-associated G319R Gars (G240R in GARS) mutant protein is unable to rescue the above phenotype. Finally, we demonstrate that another human disease-associated mutant G605R Gars (G526 in GARS) dimerizes with the remaining wild-type protein in animals heterozygous for the T209K Gars and reduces the function enough to elicit a neuromuscular phenotype. Our data indicate that dimerization is required for the dominant neurotoxicity of disease-associated GARS mutations and provide a rapid, tractable model for studying newly identified GARS variants for a role in human disease.


Assuntos
Doença de Charcot-Marie-Tooth/patologia , Glicina-tRNA Ligase/química , Glicina-tRNA Ligase/genética , Mutação , Proteínas de Peixe-Zebra/química , Proteínas de Peixe-Zebra/genética , Animais , Células Cultivadas , Doença de Charcot-Marie-Tooth/genética , Modelos Animais de Doenças , Regulação da Expressão Gênica , Glicina-tRNA Ligase/metabolismo , Humanos , Modelos Biológicos , Fenótipo , Multimerização Proteica , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/metabolismo
7.
Environ Sci Technol ; 52(10): 6023-6031, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29683664

RESUMO

The current study reports on the toxicity, uptake, and biotransformation potential of zebrafish (embryos and larvae) exposed to benzotriazoles (BTs). Acute toxicity assays were conducted. Cardiac function abnormalities (pericardial edema and poor blood circulation) were observed from the phenotypic analysis of early life zebrafish embryos after BTs exposure. For the uptake and biotransformation experiment, extracts of whole body larvae were analyzed using liquid chromatography-high-resolution tandem mass spectrometry (UPLC-Q-TOF-HRMS/MS). The utility of hydrophilic interaction liquid chromatography (HILIC) as complementary technique to reversed phase liquid chromatography (RPLC) in the identification process was investigated. Through HILIC analyses, additional biotransformation products (bio-TPs) were detected, because of the enhanced sensitivity and better separation efficiency of isomers. Therefore, reduction of false negative results was accomplished. Both oxidative (hydroxylation) and conjugative (glucuronidation, sulfation) metabolic reactions were observed, while direct sulfation proved the dominant biotransformation pathway. Overall, 26 bio-TPs were identified through suspect and nontarget screening workflows, 22 of them reported for the first time. 4-Methyl-1- H-benzotriazole (4-MeBT) demonstrated the highest toxicity potential and was more extensively biotransformed, compared to 1- H-benzotriazole (BT) and 5-methyl-1- H-benzotriazole (5-MeBT). The extent of biotransformation proved particularly informative in the current study, to explain and better understand the different toxicity potentials of BTs.


Assuntos
Cromatografia de Fase Reversa , Peixe-Zebra , Animais , Biotransformação , Cromatografia Líquida , Interações Hidrofóbicas e Hidrofílicas , Larva , Triazóis
8.
Biochim Biophys Acta ; 1866(2): 252-265, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27693125

RESUMO

Pleiotrophin (PTN) is a secreted heparin-binding growth factor that through its receptor protein tyrosine phosphatase beta/zeta (RPTPß/ζ) has a significant regulatory effect on angiogenesis and cancer. PTN and RPTPß/ζ are over-expressed in several types of human cancers and regulate important cancer cell functions in vitro and cancer growth in vivo. This review begins with a brief introduction of PTN and the regulation of its expression. PTN receptors are described with special emphasis on RPTPß/ζ, which also interacts with and/or affects the function of other important targets for cancer therapy, such as vascular endothelial growth factor A, ανß3 and cell surface nucleolin. PTN biological activities related to angiogenesis and cancer are extensively discussed. Finally, up to date approaches of targeting PTN or RPTPß/ζ for cancer treatment are presented. Insights into the regulatory role of PTN/RPTPß/ζ on angiogenesis will be extremely beneficial for future development of alternative anti-angiogenic approaches in cancer therapy.


Assuntos
Proteínas de Transporte/fisiologia , Citocinas/fisiologia , Neoplasias/etiologia , Neovascularização Patológica/etiologia , Neovascularização Fisiológica , Proteínas Tirosina Fosfatases Classe 5 Semelhantes a Receptores/fisiologia , Animais , Proteínas de Transporte/genética , Citocinas/genética , Regulação da Expressão Gênica , Humanos , Neoplasias/irrigação sanguínea
9.
Biochem J ; 473(24): 4609-4627, 2016 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-27754889

RESUMO

The oncoprotein SET/I2PP2A (protein phosphatase 2A inhibitor 2) participates in various cellular mechanisms such as transcription, cell cycle regulation and cell migration. SET is also an inhibitor of the serine/threonine phosphatase PP2A, which is involved in the regulation of cell homeostasis. In zebrafish, there are two paralogous set genes that encode Seta (269 amino acids) and Setb (275 amino acids) proteins which share 94% identity. We show here that seta and setb are similarly expressed in the eye, the otic vesicle, the brain and the lateral line system, as indicated by in situ hybridization labeling. Whole-mount immunofluorescence analysis revealed the expression of Seta/b proteins in the eye retina, the olfactory pit and the lateral line neuromasts. Loss-of-function studies using antisense morpholino oligonucleotides targeting both seta and setb genes (MOab) resulted in increased apoptosis, reduced cell proliferation and morphological defects. The morphant phenotypes were partially rescued when MOab was co-injected with human SET mRNA. Knockdown of setb with a transcription-blocking morpholino oligonucleotide (MOb) resulted in phenotypic defects comparable with those induced by setb gRNA (guide RNA)/Cas9 [CRISPR (clustered regularly interspaced short palindromic repeats)-associated 9] injections. In vivo labeling of hair cells showed a significantly decreased number of neuromasts in MOab-, MOb- and gRNA/Cas9-injected embryos. Microarray analysis of MOab morphant transcriptome revealed differential expression in gene networks controlling transcription in the sensory organs, including the eye retina, the ear and the lateral line. Collectively, our results suggest that seta and setb are required during embryogenesis and play roles in the zebrafish sensory system development.


Assuntos
Fatores de Transcrição/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Sequência de Aminoácidos , Animais , Western Blotting , Encéfalo/embriologia , Encéfalo/metabolismo , Embrião não Mamífero/metabolismo , Olho/embriologia , Olho/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/genética , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Hibridização In Situ , Dados de Sequência Molecular , Reação em Cadeia da Polimerase em Tempo Real , Fatores de Transcrição/genética , Peixe-Zebra , Proteínas de Peixe-Zebra/genética
10.
Molecules ; 22(4)2017 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-28333105

RESUMO

In therapeutic interventions associated with melanin hyperpigmentation, tyrosinase is regarded as a target enzyme as it catalyzes the rate-limiting steps in mammalian melanogenesis. Since many known agents have been proven to be toxic, there has been increasing impetus to identify alternative tyrosinase inhibitors, especially from natural sources. In this study, we investigated 900 extracts from Greek plants for potential tyrosinase inhibitive properties. Among the five most potent extracts, the methanol extract of Morus alba wood (MAM) demonstrated a significant reduction in intracellular tyrosinase and melanin content in B16F10 melanoma cells. Bioassay-guided isolation led to the acquisition of twelve compounds: oxyresveratrol (1), kuwanon C (2), mulberroside A (3), resorcinol (4), dihydrooxyresveratol (5), trans-dihydromorin (6), 2,4,3'-trihydroxydihydrostilbene (7), kuwanon H (8), 2,4-dihydroxybenzaldehyde (9), morusin (10), moracin M (11) and kuwanon G (12). Among these, 2,4,3'-trihydroxydihydrostilbene (7) is isolated for the first time from Morus alba and constitutes a novel potent tyrosinase inhibitor (IC50 0.8 ± 0.15). We report here for the first time dihydrooxyresveratrol (5) as a potent natural tyrosinase inhibitor (IC50 0.3 ± 0.05). Computational docking analysis indicated the binding modes of six tyrosinase inhibitors with the aminoacids of the active centre of tyrosinase. Finally, we found both MAM extract and compounds 1, 6 and 7 to significantly suppress in vivo melanogenesis during zebrafish embryogenesis.


Assuntos
Inibidores Enzimáticos/isolamento & purificação , Hiperpigmentação/enzimologia , Metanol/isolamento & purificação , Monofenol Mono-Oxigenase/antagonistas & inibidores , Morus/química , Animais , Linhagem Celular Tumoral , Inibidores Enzimáticos/farmacologia , Hiperpigmentação/tratamento farmacológico , Melaninas/biossíntese , Melanoma/tratamento farmacológico , Melanoma/enzimologia , Metanol/química , Metanol/farmacologia , Camundongos , Simulação de Acoplamento Molecular , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/farmacologia
11.
Heart Fail Rev ; 21(6): 803-813, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27503203

RESUMO

Cardiovascular disease (CVD) is one of the leading causes of death worldwide. The most significant risk factors associated with the development of heart diseases include genetic and environmental factors such as hypertension, high blood cholesterol levels, diabetes, smoking, and obesity. Coronary artery disease accounts for the highest percentage of CVD deaths and stroke, cardiomyopathies, congenital heart diseases, heart valve defects and arrhythmias follow. The causes, prevention, and treatment of all forms of cardiovascular disease remain active fields of biomedical research, with hundreds of scientific studies published on a weekly basis. Generating animal models of cardiovascular diseases is the main approach used to understand the mechanism of pathogenesis and also design and test novel therapies. Here, we will focus on recent advances to finding the genetic cause and the molecular mechanisms of CVDs as well as novel drugs to treat them, using a small tropical freshwater fish native to Southeast Asia: the zebrafish (Danio rerio). Zebrafish emerged as a high-throughput but low-cost model organism that combines the advantages of forward and reverse genetics with phenotype-driven drug screenings. Noninvasive imaging allows in vivo analyses of cardiovascular phenotypes. Functional verification of candidate genes from genome-wide association studies has verified the role of several genes in the pathophysiology of CVDs. Also, zebrafish hearts maintain their ability to regenerate throughout their lifetime, providing novel insights to understand human cardiac regeneration.


Assuntos
Doenças Cardiovasculares/tratamento farmacológico , Doenças Cardiovasculares/genética , Modelos Animais de Doenças , Peixe-Zebra , Animais , Avaliação Pré-Clínica de Medicamentos , Estudo de Associação Genômica Ampla , Coração/fisiopatologia , Humanos , Fenótipo , Regeneração
12.
Eur J Pharmacol ; 977: 176692, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38821164

RESUMO

Protein tyrosine phosphatase receptor zeta 1 (PTPRZ1) is a transmembrane tyrosine phosphatase (TP) that serves as a receptor for pleiotrophin (PTN) and vascular endothelial growth factor A 165 (VEGFA165) to regulate endothelial cell migration. In the present work, we identify a PTN peptide fragment (PTN97-110) that inhibits the interaction of PTN and VEGFA165 with PTPRZ1 but not VEGF receptor 2. This peptide abolishes the stimulatory effect of PTN and VEGFA165 on endothelial cell migration, tube formation on Matrigel, and Akt activation in vitro. It also partially inhibits VEGFA165-induced VEGF receptor 2 activation but does not affect ERK1/2 activation and cell proliferation. In vivo, PTN97-110 inhibits or dysregulates angiogenesis in the chick embryo chorioallantoic membrane and the zebrafish assays, respectively. In glioblastoma cells in vitro, PTN97-110 abolishes the stimulatory effect of VEGFA165 on cell migration and inhibits their anchorage-independent growth, suggesting that this peptide might also be exploited in glioblastoma therapy. Finally, in silico and experimental evidence indicates that PTN and VEGFA165 bind to the extracellular fibronectin type-III (FNIII) domain to stimulate cell migration. Collectively, our data highlight novel aspects of the interaction of PTN and VEGFA165 with PTPRZ1, strengthen the notion that PTPRZ1 is required for VEGFA165-induced signaling, and identify a peptide that targets this interaction and can be exploited for the design of novel anti-angiogenic and anti-glioblastoma therapeutic approaches.


Assuntos
Proteínas de Transporte , Movimento Celular , Citocinas , Células Endoteliais da Veia Umbilical Humana , Neovascularização Fisiológica , Proteínas Tirosina Fosfatases Classe 5 Semelhantes a Receptores , Fator A de Crescimento do Endotélio Vascular , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator A de Crescimento do Endotélio Vascular/farmacologia , Humanos , Animais , Proteínas Tirosina Fosfatases Classe 5 Semelhantes a Receptores/metabolismo , Movimento Celular/efeitos dos fármacos , Citocinas/metabolismo , Proteínas de Transporte/metabolismo , Proteínas de Transporte/farmacologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Neovascularização Fisiológica/efeitos dos fármacos , Embrião de Galinha , Peixe-Zebra , Ligação Proteica , Proliferação de Células/efeitos dos fármacos , Linhagem Celular Tumoral , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Neovascularização Patológica , Glioblastoma/patologia , Glioblastoma/metabolismo , Glioblastoma/tratamento farmacológico , Angiogênese
13.
Dev Biol ; 366(2): 327-40, 2012 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-22546689

RESUMO

The creation of molecular tools able to unravel in vivo spatiotemporal activation of specific cell signaling events during cell migration, differentiation and morphogenesis is of great relevance to developmental cell biology. Here, we describe the generation, validation and applications of two transgenic reporter lines for Wnt/ß-catenin signaling, named TCFsiam, and show that they are reliable and sensitive Wnt biosensors for in vivo studies. We demonstrate that these lines sensitively detect Wnt/ß-catenin pathway activity in several cellular contexts, from sensory organs to cardiac valve patterning. We provide evidence that Wnt/ß-catenin activity is involved in the formation and maintenance of the zebrafish CNS blood vessel network, on which sox10 neural crest-derived cells migrate and proliferate. We finally show that these transgenic lines allow for screening of Wnt signaling modifying compounds, tissue regeneration assessment as well as evaluation of potential Wnt/ß-catenin genetic modulators.


Assuntos
Via de Sinalização Wnt , Peixe-Zebra/fisiologia , Animais , Animais Geneticamente Modificados , Técnicas Biossensoriais , Diferenciação Celular , Movimento Celular , Neurônios/citologia , Neurônios/fisiologia , Peixe-Zebra/embriologia
14.
Cells ; 12(15)2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37566073

RESUMO

Cardiovascular diseases (CVDs) are the prevalent cause of mortality worldwide. A combination of environmental and genetic effectors modulates the risk of developing them. Thus, it is vital to identify candidate genes and elucidate their role in the manifestation of the disease. Large-scale human studies have revealed the implication of Craniofacial Development Protein 1 (CFDP1) in Coronary Artery Disease (CAD). CFDP1 belongs to the evolutionary conserved Bucentaur (BCNT) family, and to date, its function and mechanism of action in Cardiovascular Development are still unclear. We utilized zebrafish to investigate the role of cfdp1 in the developing heart due to the high genomic homology, similarity in heart physiology, and ease of experimental manipulations. We showed that cfdp1 was expressed during development, and we tested two morpholinos and generated a cfdp1 mutant line. The cfdp1-/- embryos developed arrhythmic hearts and exhibited defective cardiac performance, which led to a lethal phenotype. Findings from both knockdown and knockout experiments showed that abrogation of cfdp1 leads to downregulation of Wnt signaling in embryonic hearts during valve development but without affecting Notch activation in this process. The cfdp1 zebrafish mutant line provides a valuable tool for unveiling the novel mechanism of regulating cardiac physiology and function. cfdp1 is essential for cardiac development, a previously unreported phenotype most likely due to early lethality in mice. The detected phenotype of bradycardia and arrhythmias is an observation with potential clinical relevance for humans carrying heterozygous CFDP1 mutations and their risk of developing CAD.


Assuntos
Doenças Cardiovasculares , Proteínas Nucleares , Peixe-Zebra , Animais , Humanos , Coração , Proteínas Nucleares/metabolismo , Fenótipo , Via de Sinalização Wnt , Peixe-Zebra/metabolismo
15.
Stem Cell Reports ; 18(9): 1827-1840, 2023 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-37541259

RESUMO

Adherens junctions (AJs) provide adhesive properties through cadherins and associated cytoplasmic catenins and participate in morphogenetic processes. We examined AJs formed between ISL1+ cardiovascular progenitor cells during differentiation of embryonic stem cells (ESCs) in vitro and in mouse embryogenesis in vivo. We found that, in addition to N-CADHERIN, a percentage of ISL1+ cells transiently formed vascular endothelial (VE)-CADHERIN-mediated AJs during in vitro differentiation on days 4 and 5, and the same pattern was observed in vivo. Fluorescence-activated cell sorting (FACS) analysis extended morphological data showing that VE-CADHERIN+/ISL1+ cells constitute a significant percentage of cardiac progenitors on days 4 and 5. The VE-CADHERIN+/ISL1+ cell population represented one-third of the emerging FLK1+/PDGFRa+ cardiac progenitor cells (CPCs) for a restricted time window (days 4-6). Ablation of VE-CADHERIN during ESC differentiation results in severe inhibition of cardiac differentiation. Disruption of all classic cadherins in the VE-CADHERIN+ population via a cadherin dominant-negative mutant's expression resulted in a dramatic decrease in the ISL1+ population and inhibition of cardiac differentiation.


Assuntos
Antígenos CD , Caderinas , Coração , Animais , Camundongos , Antígenos CD/metabolismo , Caderinas/genética , Caderinas/metabolismo , Diferenciação Celular , Células-Tronco Embrionárias/metabolismo , Coração/embriologia
16.
Pharmaceutics ; 15(2)2023 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-36839704

RESUMO

Peptide-drug conjugates are delivery systems for selective delivery of cytotoxic agents to target cancer cells. In this work, the optimized synthesis of JH-VII-139-1 and its c(RGDyK) peptide conjugates is presented. The low nanomolar SRPK1 inhibitor, JH-VII-139-1, which is an analogue of Alectinib, was linked to the ανß3 targeting oligopeptide c(RGDyK) through amide, carbamate and urea linkers. The chemostability, cytotoxic and antiangiogenic properties of the synthesized hybrids were thoroughly studied. All conjugates retained mid nanomolar-level inhibitory activity against SRPK1 kinase and two out of four conjugates, geo75 and geo77 exhibited antiproliferative effects with low micromolar IC50 values against HeLa, K562, MDA-MB231 and MCF7 cancer cells. The activities were strongly related to the stability of the linkers and the release of JH-VII-139-1. In vivo zebrafish screening assays demonstrated the ability of the synthesized conjugates to inhibit the length or width of intersegmental vessels (ISVs). Flow cytometry experiments were used to test the cellular uptake of a fluorescein tagged hybrid in MCF7 and MDA-MB231 cells that revealed a receptor-mediated endocytosis process. In conclusion, most conjugates retained the inhibitory potency against SRPK1 as JH-VII-139-1 and demonstrated antiproliferative and antiangiogenic activities. Further animal model experiments are needed to uncover the full potential of such peptide conjugates in cancer therapy and angiogenesis-related diseases.

17.
NPJ Regen Med ; 8(1): 13, 2023 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-36869039

RESUMO

The single curative measure for heart failure patients is a heart transplantation, which is limited due to a shortage of donors, the need for immunosuppression and economic costs. Therefore, there is an urgent unmet need for identifying cell populations capable of cardiac regeneration that we will be able to trace and monitor. Injury to the adult mammalian cardiac muscle, often leads to a heart attack through the irreversible loss of a large number of cardiomyocytes, due to an idle regenerative capability. Recent reports in zebrafish indicate that Tbx5a is a vital transcription factor for cardiomyocyte regeneration. Preclinical data underscore the cardioprotective role of Tbx5 upon heart failure. Data from our earlier murine developmental studies have identified a prominent unipotent Tbx5-expressing embryonic cardiac precursor cell population able to form cardiomyocytes, in vivo, in vitro and ex vivo. Using a developmental approach to an adult heart injury model and by employing a lineage-tracing mouse model as well as the use of single-cell RNA-seq technology, we identify a Tbx5-expressing ventricular cardiomyocyte-like precursor population, in the injured adult mammalian heart. The transcriptional profile of that precursor cell population is closer to that of neonatal than embryonic cardiomyocyte precursors. Tbx5, a cardinal cardiac development transcription factor, lies in the center of a ventricular adult precursor cell population, which seems to be affected by neurohormonal spatiotemporal cues. The identification of a Tbx5-specific cardiomyocyte precursor-like cell population, which is capable of dedifferentiating and potentially deploying a cardiomyocyte regenerative program, provides a clear target cell population for translationally-relevant heart interventional studies.

18.
Open Res Eur ; 3: 55, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38689633

RESUMO

Soft skills are the elementary management, personal, and interpersonal abilities that are vital for an individual to be efficient at workplace or in their personal life. Each work place requires different set of soft skills. Thus, in addition to scientific/technical skills that are easier to access within a short time frame, several key soft skills are essential for the success of a researcher in today's international work environment. In this paper, the trainees and trainers of the EU-CardioRNA COST Action CA17129 training school on soft skills present basic and advanced soft skills for early career researchers. Here, we particularly emphasize on the importance of transferable and presentation skills, ethics, literature reading and reviewing, research protocol and grant writing, networking, and career opportunities for researchers. All these skills are vital but are often overlooked by some scholars. We also provide tips to ace in aforementioned skills that are crucial in a day-to-day life of early and late career researchers in academia and industry.

19.
Nat Commun ; 14(1): 6814, 2023 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-37884489

RESUMO

Extracellular matrix (ECM) deposition after central nervous system (CNS) injury leads to inhibitory scarring in humans and other mammals, whereas it facilitates axon regeneration in the zebrafish. However, the molecular basis of these different fates is not understood. Here, we identify small leucine-rich proteoglycans (SLRPs) as a contributing factor to regeneration failure in mammals. We demonstrate that the SLRPs chondroadherin, fibromodulin, lumican, and prolargin are enriched in rodent and human but not zebrafish CNS lesions. Targeting SLRPs to the zebrafish injury ECM inhibits axon regeneration and functional recovery. Mechanistically, we find that SLRPs confer mechano-structural properties to the lesion environment that are adverse to axon growth. Our study reveals SLRPs as inhibitory ECM factors that impair axon regeneration by modifying tissue mechanics and structure, and identifies their enrichment as a feature of human brain and spinal cord lesions. These findings imply that SLRPs may be targets for therapeutic strategies to promote CNS regeneration.


Assuntos
Proteoglicanas , Proteoglicanos Pequenos Ricos em Leucina , Animais , Humanos , Proteoglicanas de Sulfatos de Condroitina , Peixe-Zebra , Decorina , Axônios , Regeneração Nervosa , Proteínas da Matriz Extracelular , Sistema Nervoso Central , Mamíferos
20.
Int J Dev Biol ; 66(1-2-3): 155-161, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34549794

RESUMO

The zebrafish is a vertebrate model extensively used in Developmental Biology and Human Disease modeling, as it shares high genetic and physiological similarities with humans. It has become the second most popular animal model, after mice, with several advantages over the latter: zebrafish are easily housed and cared for; the cost of installing and maintaining a zebrafish facility is significantly lower than for mice; and they reproduce often and develop quickly. Using zebrafish complies with the 3Rs principles of laboratory animal use. Zebrafish embryos develop externally and are transparent, allowing for in vivo non-invasive imaging. There are many transgenic and mutant lines available that mimic most human diseases, including reporter lines for most signaling pathways. There are also several reverse genetic tools to functionally verify genes or variants of unknown significance, identified in Genome-Wide Association Studies (GWAS) or using Next Generation Sequencing (NGS) approaches. In addition, the model emerges as an invaluable whole animal platform for various stages of drug discovery efforts by exploring the possibility of creating high-throughput phenotypic-driven screens. These include phenotypic screenings, determinations of general and/or specific toxicity (cardiac, renal, hepatotoxicity etc.), and mechanism of action studies. Finally, zebrafish are able to retain their capacity to regenerate most organs during their entire life span, making them a well-established model for the study of organ regeneration. The European Zebrafish Society consists of more than 180 research labs throughout Europe. In Greece however, zebrafish use remains rather limited. Here I present here a brief historical overview of zebrafish research in Greece.


Assuntos
Natação , Peixe-Zebra , Animais , Modelos Animais de Doenças , Estudo de Associação Genômica Ampla , Grécia , Camundongos , Peixe-Zebra/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA