Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Technol ; 58(22): 9750-9759, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38780915

RESUMO

Humans are known to be a continuous and potent indoor source of volatile organic compounds (VOCs). However, little is known about how personal hygiene, in terms of showering frequency, can influence these emissions and their impact on indoor air chemistry involving ozone. In this study, we characterized the VOC composition of the air in a controlled climate chamber (22.5 m3 with an air change rate at 3.2 h-1) occupied by four male volunteers on successive days under ozone-free (∼0 ppb) and ozone-present (37-40 ppb) conditions. The volunteers either showered the evening prior to the experiments or skipped showering for 24 and 48 h. Reduced shower frequency increased human emissions of gas-phase carboxylic acids, possibly originating from skin bacteria. With ozone present, increasing the number of no-shower days enhanced ozone-skin surface reactions, yielding higher levels of oxidation products. Wearing the same clothing over several days reduced the level of compounds generated from clothing-ozone reactions. When skin lotion was applied, the yield of the skin ozonolysis products decreased, while other compounds increased due to ozone reactions with lotion ingredients. These findings help determine the degree to which personal hygiene choices affect the indoor air composition and indoor air exposures.


Assuntos
Poluição do Ar em Ambientes Fechados , Ozônio , Compostos Orgânicos Voláteis , Humanos , Ozônio/análise , Compostos Orgânicos Voláteis/análise , Masculino , Higiene , Adulto
2.
Environ Sci Technol ; 58(4): 1986-1997, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38237915

RESUMO

Humans are the primary sources of CO2 and NH3 indoors. Their emission rates may be influenced by human physiological and psychological status. This study investigated the impact of physiological and psychological engagements on the human emissions of CO2 and NH3. In a climate chamber, we measured CO2 and NH3 emissions from participants performing physical activities (walking and running at metabolic rates of 2.5 and 5 met, respectively) and psychological stimuli (meditation and cognitive tasks). Participants' physiological responses were recorded, including the skin temperature, electrodermal activity (EDA), and heart rate, and then analyzed for their relationship with CO2 and NH3 emissions. The results showed that physiological engagement considerably elevated per-person CO2 emission rates from 19.6 (seated) to 46.9 (2.5 met) and 115.4 L/h (5 met) and NH3 emission rates from 2.7 to 5.1 and 8.3 mg/h, respectively. CO2 emissions reduced when participants stopped running, whereas NH3 emissions continued to increase owing to their distinct emission mechanisms. Psychological engagement did not significantly alter participants' emissions of CO2 and NH3. Regression analysis revealed that CO2 emissions were predominantly correlated with heart rate, whereas NH3 emissions were mainly associated with skin temperature and EDA. These findings contribute to a deeper understanding of human metabolic emissions of CO2 and NH3.


Assuntos
Amônia , Dióxido de Carbono , Humanos
3.
Environ Sci Technol ; 58(10): 4704-4715, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38326946

RESUMO

Ozone reaction with human surfaces is an important source of ultrafine particles indoors. However, 1-20 nm particles generated from ozone-human chemistry, which mark the first step of particle formation and growth, remain understudied. Ventilation and indoor air movement could have important implications for these processes. Therefore, in a controlled-climate chamber, we measured ultrafine particles initiated from ozone-human chemistry and their dependence on the air change rate (ACR, 0.5, 1.5, and 3 h-1) and operation of mixing fans (on and off). Concurrently, we measured volatile organic compounds (VOCs) and explored the correlation between particles and gas-phase products. At 25-30 ppb ozone levels, humans generated 0.2-7.7 × 1012 of 1-3 nm, 0-7.2 × 1012 of 3-10 nm, and 0-1.3 × 1012 of 10-20 nm particles per person per hour depending on the ACR and mixing fan operation. Size-dependent particle growth and formation rates increased with higher ACR. The operation of mixing fans suppressed the particle formation and growth, owing to enhanced surface deposition of the newly formed particles and their precursors. Correlation analyses revealed complex interactions between the particles and VOCs initiated by ozone-human chemistry. The results imply that ventilation and indoor air movement may have a more significant influence on particle dynamics and fate relative to indoor chemistry.


Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , Ozônio , Compostos Orgânicos Voláteis , Humanos , Tamanho da Partícula , Ozônio/análise , Ventilação/métodos , Material Particulado/análise , Compostos Orgânicos Voláteis/análise , Poluição do Ar em Ambientes Fechados/análise , Poluentes Atmosféricos/análise
4.
Environ Sci Technol ; 58(15): 6693-6703, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38577981

RESUMO

A major component of human skin oil is squalene, a highly unsaturated hydrocarbon that protects the skin from atmospheric oxidants. Skin oil, and thus squalene, is continuously replenished on the skin surface. Squalene is also quickly consumed through reactions with ozone and other oxidants. This study examined the extent of squalene depletion in the skin oils of the forearm of human volunteers after exposure to ozone in a climate chamber. Temperature, relative humidity (RH), skin coverage by clothing, and participants' age were varied in a controlled manner. Concentrations of squalene were determined in skin wipe samples collected before and after ozone exposure. Exposures to ozone resulted in statistically significant decreases in post-exposure squalene concentrations compared to pre-exposure squalene concentrations in the skin wipes when squalene concentrations were normalized by concentrations of co-occurring cholesterol but not by co-occurring pyroglutamic acid (PGA). The rate of squalene loss due to ozonolysis was lower than its replenishment on the skin surface. Within the ranges examined, temperature and RH did not significantly affect the difference between normalized squalene levels in post-samples versus pre-samples. Although not statistically significant, skin coverage and age of the volunteers (three young adults, three seniors, and three teenagers) did appear to impact squalene depletion on the skin surfaces.


Assuntos
Poluição do Ar em Ambientes Fechados , Ozônio , Humanos , Adolescente , Esqualeno/análise , Ozônio/análise , Poluição do Ar em Ambientes Fechados/análise , Pele/química , Oxidantes
5.
Environ Sci Technol ; 56(8): 4838-4848, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35389619

RESUMO

Human-emitted volatile organic compounds (VOCs) are mainly from breath and the skin. In this study, we continuously measured VOCs in a stainless-steel environmentally controlled climate chamber (22.5 m3, air change rate at 3.2 h-1) occupied by four seated human volunteers using proton transfer reaction time-of-flight mass spectrometry and gas chromatography mass spectrometry. Experiments with human whole body, breath-only, and dermal-only emissions were performed under ozone-free and ozone-present conditions. In addition, the effect of temperature, relative humidity, clothing type, and age was investigated for whole-body emissions. Without ozone, the whole-body total emission rate (ER) was 2180 ± 620 µg h-1 per person (p-1), dominated by exhaled chemicals. The ERs of oxygenated VOCs were positively correlated with the enthalpy of the air. Under ozone-present conditions (∼37 ppb), the whole-body total ER doubled, with the increase mainly driven by VOCs resulting from skin surface lipids/ozone reactions, which increased with relative humidity. Long clothing (more covered skin) was found to reduce the total ERs but enhanced certain chemicals related to the clothing. The ERs of VOCs derived from this study provide a valuable data set of human emissions under various conditions and can be used in models to better predict indoor air quality, especially for highly occupied environments.


Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , Ozônio , Compostos Orgânicos Voláteis , Poluentes Atmosféricos/análise , Poluição do Ar em Ambientes Fechados/análise , Monitoramento Ambiental , Humanos , Ozônio/química
6.
Environ Sci Technol ; 55(1): 509-518, 2021 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-33337850

RESUMO

Human emissions of fluorescent aerosol particles (FAPs) can influence the biological burden of indoor air. Yet, quantification of FAP emissions from human beings remains limited, along with a poor understanding of the underlying emission mechanisms. To reduce the knowledge gap, we characterized human emissions of size-segregated FAPs (1-10 µm) and total particles in a climate chamber with low-background particle levels. We probed the influence of several personal factors (clothing coverage and age) and environmental parameters (level of ozone, air temperature, and relative humidity) on particle emissions from human volunteers. A material-balance model showed that the mean emission rate ranged 5.3-16 × 106 fluorescent particles per person-h (0.30-1.2 mg per person-h), with a dominant size mode within 3-5 µm. Volunteers wearing long-sleeve shirts and pants produced 40% more FAPs relative to those wearing t-shirts and shorts. Particle emissions varied across the age groups: seniors (average age 70.5 years) generated 50% fewer FAPs compared to young adults (25.0 years) and teenagers (13.8 years). While we did not observe a measurable influence of ozone (0 vs 40 ppb) on human FAP emissions, there was a strong influence of relative humidity (34 vs 62%), with FAP emissions decreasing by 30-60% at higher humidity.


Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , Ozônio , Adolescente , Aerossóis/análise , Idoso , Poluentes Atmosféricos/análise , Poluição do Ar em Ambientes Fechados/análise , Monitoramento Ambiental , Humanos , Tamanho da Partícula , Adulto Jovem
7.
Environ Sci Technol ; 55(20): 13614-13624, 2021 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-34591444

RESUMO

People influence indoor air chemistry through their chemical emissions via breath and skin. Previous studies showed that direct measurement of total OH reactivity of human emissions matched that calculated from parallel measurements of volatile organic compounds (VOCs) from breath, skin, and the whole body. In this study, we determined, with direct measurements from two independent groups of four adult volunteers, the effect of indoor temperature and humidity, clothing coverage (amount of exposed skin), and indoor ozone concentration on the total OH reactivity of gaseous human emissions. The results show that the measured concentrations of VOCs and ammonia adequately account for the measured total OH reactivity. The total OH reactivity of human emissions was primarily affected by ozone reactions with organic skin-oil constituents and increased with exposed skin surface, higher temperature, and higher humidity. Humans emitted a comparable total mixing ratio of VOCs and ammonia at elevated temperature-low humidity and elevated temperature-high humidity, with relatively low diversity in chemical classes. In contrast, the total OH reactivity increased with higher temperature and higher humidity, with a larger diversity in chemical classes compared to the total mixing ratio. Ozone present, carbonyl compounds were the dominant reactive compounds in all of the reported conditions.


Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , Ozônio , Compostos Orgânicos Voláteis , Adulto , Poluentes Atmosféricos/análise , Poluição do Ar em Ambientes Fechados/análise , Vestuário , Monitoramento Ambiental , Humanos , Umidade , Ozônio/análise , Temperatura , Compostos Orgânicos Voláteis/análise
8.
Environ Sci Technol ; 55(1): 149-159, 2021 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-33295177

RESUMO

Humans are a potent, mobile source of various volatile organic compounds (VOCs) in indoor environments. Such direct anthropogenic emissions are gaining importance, as those from furnishings and building materials have become better regulated and energy efficient homes may reduce ventilation. While previous studies have characterized human emissions in indoor environments, the question remains whether VOCs remain unidentified by current measuring techniques. In this study conducted in a climate chamber occupied by four people, the total OH reactivity of air was quantified, together with multiple VOCs measured by proton transfer reaction time-of-flight mass spectrometry (PTR-ToF-MS) and fast gas chromatography-mass spectrometry (fast-GC-MS). Whole-body, breath, and dermal emissions were assessed. The comparison of directly measured OH reactivity and that of the summed reactivity of individually measured species revealed no significant shortfall. Ozone exposure (37 ppb) was found to have little influence on breath OH reactivity but enhanced dermal OH reactivity significantly. Without ozone, the whole-body OH reactivity was dominated by breath emissions, mostly isoprene (76%). With ozone present, OH reactivity nearly doubled, with the increase being mainly caused by dermal emissions of mostly carbonyl compounds (57%). No significant difference in total OH reactivity was observed for different age groups (teenagers/young adults/seniors) without ozone. With ozone present, the total OH reactivity decreased slightly with increasing age.


Assuntos
Poluentes Atmosféricos , Ozônio , Compostos Orgânicos Voláteis , Adolescente , Poluentes Atmosféricos/análise , Clima , Materiais de Construção , Monitoramento Ambiental , Humanos , Ventilação , Compostos Orgânicos Voláteis/análise , Adulto Jovem
9.
Environ Sci Technol ; 55(21): 14536-14545, 2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34672572

RESUMO

Nanocluster aerosols (NCAs, particles <3 nm) are important players in driving climate feedbacks and processes that impact human health. This study reports, for the first time, NCA formation when gas-phase ozone reacts with human surfaces. In an occupied climate-controlled chamber, we detected NCA only when ozone was present. NCA emissions were dependent on clothing coverage, occupant age, air temperature, and humidity. Ozone-initiated chemistry with human skin lipids (particularly their primary surface reaction products) is the key mechanism driving NCA emissions, as evidenced by positive correlations with squalene in human skin wipe samples and known gaseous products from ozonolysis of skin lipids. Oxidation by OH radicals, autoxidation reactions, and human-emitted NH3 may also play a role in NCA formation. Such chemical processes are anticipated to generate aerosols of the smallest size (1.18-1.55 nm), whereas larger clusters result from subsequent growth of the smaller aerosols. This study shows that whenever we encounter ozone indoors, where we spend most of our lives, NCAs will be produced in the air around us.


Assuntos
Poluição do Ar em Ambientes Fechados , Ozônio , Aerossóis , Poluição do Ar em Ambientes Fechados/análise , Humanos , Umidade , Ozônio/análise , Temperatura
10.
Indoor Air ; 31(5): 1495-1508, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33751666

RESUMO

Phthalates are widely used in consumer products. Exposure to phthalates can lead to adverse health effects in humans, with early-life exposure being of particular concern. Phthalate exposure occurs mainly through ingestion, inhalation, and dermal absorption. However, our understanding of the relative importance of different exposure routes is incomplete. This study estimated the intake of five phthalates from the residential indoor environment for 455 Swedish pregnant women in the SELMA study using phthalate mass fraction in indoor dust and compares these to total daily phthalate intakes back-calculated from phthalate metabolite concentrations in the women's urine. Steady-state models were used to estimate indoor air phthalate concentrations from dust measurements. Intakes from residential dust and air made meaningful contributions to total daily intakes of more volatile di-ethyl phthalate (DEP), di-n-butyl phthalate (DnBP), and di-iso-butyl phthalate (DiBP) (11% of total DEP intake and 28% of total DnBP and DiBP intake combined). Dermal absorption from air was the dominant pathway contributing to the indoor environmental exposure. Residential exposure to less volatile phthalates made minor contributions to total intake. These results suggest that reducing the presence of low molecular weight phthalates in the residential indoor environment can meaningfully reduce phthalate intake among pregnant women.


Assuntos
Poluentes Atmosféricos/análise , Poluição do Ar em Ambientes Fechados/estatística & dados numéricos , Exposição Materna/estatística & dados numéricos , Ácidos Ftálicos , Gestantes , Adulto , Feminino , Humanos , Gravidez
11.
Environ Sci Technol ; 54(9): 5419-5428, 2020 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-32233434

RESUMO

Ammonia (NH3) is typically present at higher concentrations in indoor air (∼10-70 ppb) than in outdoor air (∼50 ppt to 5 ppb). It is the dominant neutralizer of acidic species in indoor environments, strongly influencing the partitioning of gaseous acidic and basic species to aerosols, surface films, and bulk water. We have measured NH3 emissions from humans in an environmentally controlled chamber. A series of experiments, each with four volunteers, quantified NH3 emissions as a function of temperature (25.1-32.6 °C), clothing (long-sleeved shirts/pants or T-shirts/shorts), age (teenagers, adults, and seniors), relative humidity (low or high), and ozone (<2 ppb or ∼35 ppb). Higher temperature and more skin exposure (T-shirts/shorts) significantly increased emission rates. For adults and seniors (long clothing), NH3 emissions are estimated to be 0.4 mg h-1 person-1 at 25 °C, 0.8 mg h-1 person-1 at 27 °C, and 1.4 mg h-1 person-1 at 29 °C, based on the temperature relationship observed in this study. Human NH3 emissions are sufficient to neutralize the acidifying impacts of human CO2 emissions. Results from this study can be used to more accurately model indoor and inner-city outdoor NH3 concentrations and associated chemistry.


Assuntos
Poluentes Atmosféricos/análise , Poluição do Ar em Ambientes Fechados/análise , Ozônio/análise , Adolescente , Aerossóis/análise , Amônia/análise , Monitoramento Ambiental , Humanos
12.
Indoor Air ; 30(6): 1213-1228, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32424858

RESUMO

With the gradual reduction of emissions from building products, emissions from human occupants become more dominant indoors. The impact of human emissions on indoor air quality is inadequately understood. The aim of the Indoor Chemical Human Emissions and Reactivity (ICHEAR) project was to examine the impact on indoor air chemistry of whole-body, exhaled, and dermally emitted human bioeffluents under different conditions comprising human factors (t-shirts/shorts vs long-sleeve shirts/pants; age: teenagers, young adults, and seniors) and a variety of environmental factors (moderate vs high air temperature; low vs high relative humidity; presence vs absence of ozone). A series of human subject experiments were performed in a well-controlled stainless steel climate chamber. State-of-the-art measurement technologies were used to quantify the volatile organic compounds emitted by humans and their total OH reactivity; ammonia, nanoparticle, fluorescent biological aerosol particle (FBAP), and microbial emissions; and skin surface chemistry. This paper presents the design of the project, its methodologies, and preliminary results, comparing identical measurements performed with five groups, each composed of 4 volunteers (2 males and 2 females). The volunteers wore identical laundered new clothes and were asked to use the same set of fragrance-free personal care products. They occupied the ozone-free (<2 ppb) chamber for 3 hours (morning) and then left for a 10-min lunch break. Ozone (target concentration in occupied chamber ~35 ppb) was introduced 10 minutes after the volunteers returned to the chamber, and the measurements continued for another 2.5 hours. Under a given ozone condition, relatively small differences were observed in the steady-state concentrations of geranyl acetone, 6MHO, and 4OPA between the five groups. Larger variability was observed for acetone and isoprene. The absence or presence of ozone significantly influenced the steady-state concentrations of acetone, geranyl acetone, 6MHO, and 4OPA. Results of replicate experiments demonstrate the robustness of the experiments. Higher repeatability was achieved for dermally emitted compounds and their reaction products than for constituents of exhaled breath.


Assuntos
Poluição do Ar em Ambientes Fechados , Adolescente , Aerossóis , Idoso , Amônia , Butadienos , Monitoramento Ambiental , Expiração , Feminino , Hemiterpenos , Humanos , Masculino , Odorantes , Ozônio , Terpenos , Compostos Orgânicos Voláteis , Adulto Jovem
13.
Environ Sci Technol ; 53(10): 5559-5575, 2019 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-31034216

RESUMO

A growing body of evidence identifies clothing as an important mediator of human exposure to chemicals and particles, which may have public health significance. This paper reviews and critically assesses the state of knowledge regarding how clothing, during wear, influences exposure to molecular chemicals, abiotic particles, and biotic particles, including microbes and allergens. The underlying processes that govern the acquisition, retention, and transmission of clothing-associated contaminants and the consequences of these for subsequent exposures are explored. Chemicals of concern have been identified in clothing, including byproducts of their manufacture and chemicals that adhere to clothing during use and care. Analogously, clothing acts as a reservoir for biotic and abiotic particles acquired from occupational and environmental sources. Evidence suggests that while clothing can be protective by acting as a physical or chemical barrier, clothing-mediated exposures can be substantial in certain circumstances and may have adverse health consequences. This complex process is influenced by the type and history of the clothing; the nature of the contaminant; and by wear, care, and storage practices. Future research efforts are warranted to better quantify, predict, and control clothing-related exposures.


Assuntos
Vestuário , Exposição Ambiental , Poluentes Ambientais , Humanos
14.
Environ Sci Technol ; 53(24): 14441-14448, 2019 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-31757120

RESUMO

Previous work examining the condensed-phase products of squalene particle ozonolysis found that an increase in water vapor concentration led to lower concentrations of secondary ozonides, increased concentrations of carbonyls, and smaller particle diameter, suggesting that water changes the fate of the Criegee intermediate. To determine if this volume loss corresponds to an increase in gas-phase products, we measured gas-phase volatile organic compound (VOC) concentrations via proton-transfer-reaction time-of-flight mass spectrometry. Studies were conducted in a flow-tube reactor at atmospherically relevant ozone (O3) exposure levels (5-30 ppb h) with pure squalene particles. An increase in water vapor concentration led to strong enhancement of gas-phase oxidation products at all tested O3 exposures. An increase in water vapor from near zero to 70% relative humidity (RH) at high O3 exposure increased the total mass concentration of gas-phase VOCs by a factor of 3. The observed fraction of carbon in the gas-phase correlates with the fraction of particle volume lost. Experiments involving O3 oxidation of shirts soiled with skin oil confirms that the RH dependence of gas-phase reaction product generation occurs similarly on surfaces containing skin oil under realistic conditions. Similar behavior is expected for O3 reactions with other surface-bound organics containing unsaturated carbon bonds.


Assuntos
Ozônio , Esqualeno , Espectrometria de Massas , Compostos Orgânicos , Vapor
15.
Indoor Air ; 29(6): 913-925, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31420890

RESUMO

This study aimed to better understand and quantify the influence of ventilation strategies on occupant-related indoor air chemistry. The oxidation of human skin oil constituents was studied in a continuously ventilated climate chamber at two air exchange rates (1 h-1 and 3 h-1 ) and two initial ozone mixing ratios (30 and 60 ppb). Additional measurements were performed to investigate the effect of intermittent ventilation ("off" followed by "on"). Soiled t-shirts were used to simulate the presence of occupants. A time-of-flight-chemical ionization mass spectrometer (ToF-CIMS) in positive mode using protonated water clusters was used to measure the oxygenated reaction products geranyl acetone, 6-methyl-5-hepten-2-one (6-MHO) and 4-oxopentanal (4-OPA). The measurement data were used in a series of mass balance models accounting for formation and removal processes. Reactions of ozone with squalene occurring on the surface of the t-shirts are mass transport limited; ventilation rate has only a small effect on this surface chemistry. Ozone-squalene reactions on the t-shirts produced gas-phase geranyl acetone, which was subsequently removed almost equally by ventilation and further reaction with ozone. About 70% of gas-phase 6-MHO was produced in surface reactions on the t-shirts, the remainder in secondary gas-phase reactions of ozone with geranyl acetone. 6-MHO was primarily removed by ventilation, while further reaction with ozone was responsible for about a third of its removal. 4-OPA was formed primarily on the surfaces of the shirts (~60%); gas-phase reactions of ozone with geranyl acetone and 6-MHO accounted for ~30% and ~10%, respectively. 4-OPA was removed entirely by ventilation. The results from the intermittent ventilation scenarios showed delayed formation of the reaction products and lower product concentrations compared to continuous ventilation.


Assuntos
Poluentes Atmosféricos/análise , Poluição do Ar em Ambientes Fechados/análise , Ozônio/análise , Pele/química , Ventilação/métodos , Aldeídos/análise , Ambiente Construído , Vestuário , Monitoramento Ambiental/métodos , Humanos , Cetonas/análise , Espectrometria de Massas/métodos , Oxirredução , Terpenos/análise
16.
Environ Sci Technol ; 51(19): 11371-11379, 2017 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-28858503

RESUMO

Benzophenone-3 (also known as BP-3 or oxybenzone) is added to sunscreens, plastics, and some coatings to filter UV radiation. The suspected endocrine disruptor BP-3 has been detected in the air and settled dust of homes and is expected to redistribute from its original sources to other indoor compartments, including clothing. Given its physical and chemical properties, we hypothesized that dermal uptake from clothing could contribute to the body burden of this compound. First, cotton shirts were exposed to air at an elevated concentration of BP-3 for 32 days; the final air concentration was 4.4 µg/m3. Next, three participants wore the exposed shirts for 3 h. After 3 h of exposure, participants wore their usual clothing during the collection of urine samples for the next 48 h. Urine was analyzed for BP-3, a metabolite (BP-1), and six other UV filters. The rate of urinary excretion of the sum of BP-1 and BP-3 increased for all participants during and following the 3 h of exposure. The summed mass of BP-1 and BP-3 excreted during the first 24 h attributable to wearing exposed t-shirts were 12, 9.9, and 82 µg for participants 1, 2, and 3, respectively. Analysis of these results, coupled with predictions of steady-state models, suggest that dermal uptake of BP-3 from clothing could meaningfully contribute to overall body burden.


Assuntos
Benzofenonas/farmacocinética , Vestuário , Protetores Solares/farmacocinética , Adulto , Benzofenonas/urina , Disruptores Endócrinos , Feminino , Humanos , Masculino
18.
Environ Res ; 137: 432-9, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25625823

RESUMO

Studies in rodents indicate that phthalates can function as adjuvants, increasing the potency of allergens. Meanwhile, epidemiological studies have produced inconsistent findings regarding relationships between phthalate exposures and allergic disease in humans. The present study examined phthalate exposure and allergic sensitization in a large group of 3-5 year old children: 300 random controls and 200 cases with asthma, rhinoconjunctivitis or atopic dermatitis as reported in questionnaires. The children were clinically examined to confirm their health status. Blood samples were analyzed for IgE sensitization to 20 allergens. Adjusted logistic regressions were used to look for associations between phthalate exposure indicators (mass fractions in dust from children's homes and daycares, metabolites in urine, and estimated daily indoor intakes from dust ingestion, inhalation and dermal absorption) and sensitization and allergic disease. No direct associations were found between phthalate exposures and asthma, rhinoconjunctivitis or atopic dermatitis. However, among children with these diseases, there were significant associations between non-dietary exposures to DnBP, BBzP and DEHP in the indoor environment (mass fractions in dust or daily indoor intakes from dust ingestion, inhalation and dermal absorption) and allergic sensitization. Some exposure pathways were more strongly associated with sensitization than others, although the results are not conclusive and require confirmation. A number of the associations depended on accounting for a child's exposure in more than one environment (i.e., daycare facility as well as home). Significant associations were not observed between phthalate metabolites in urine, which reflected exposure from diet as well as indoor pathways, and allergic sensitization.


Assuntos
Asma/epidemiologia , Dermatite Atópica/epidemiologia , Poluentes Ambientais/toxicidade , Ácidos Ftálicos/toxicidade , Rinite Alérgica/epidemiologia , Asma/induzido quimicamente , Asma/imunologia , Pré-Escolar , Conjuntivite/induzido quimicamente , Conjuntivite/epidemiologia , Conjuntivite/imunologia , Dinamarca/epidemiologia , Dermatite Atópica/induzido quimicamente , Dermatite Atópica/imunologia , Poeira/análise , Poluentes Ambientais/urina , Feminino , Humanos , Masculino , Ácidos Ftálicos/urina , Rinite Alérgica/induzido quimicamente , Rinite Alérgica/imunologia
20.
Environ Health ; 13: 112, 2014 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-25512042

RESUMO

BACKGROUND: Exposure to ambient air particulate matter (PM) has been linked to decline in pulmonary function and cardiovascular events possibly through inflammation. Little is known about individual exposure to ultrafine particles (UFP) inside and outside modern homes and associated health-related effects. METHODS: Associations between vascular and lung function, inflammation markers and exposure in terms of particle number concentration (PNC; d = 10-300 nm) were studied in a cross-sectional design with personal and home indoor monitoring in the Western Copenhagen Area, Denmark. During 48-h, PNC and PM2.5 were monitored in living rooms of 60 homes with 81 non-smoking subjects (30-75 years old), 59 of whom carried personal monitors both when at home and away from home. We measured lung function in terms of the FEV1/FVC ratio, microvascular function (MVF) and pulse amplitude by digital artery tonometry, blood pressure and biomarkers of inflammation including C-reactive protein, and leukocyte counts with subdivision in neutrophils, eosinophils, monocytes, and lymphocytes in blood. RESULTS: PNC from personal and stationary home monitoring showed weak correlation (r = 0.15, p = 0.24). Personal UFP exposure away from home was significantly inversely associated with MVF (1.3% decline per interquartile range, 95% confidence interval: 0.1-2.5%) and pulse amplitude and positively associated with leukocyte and neutrophil counts. The leukocyte and neutrophil counts were also positively and pulse amplitude negatively associated with total personal PNC. Indoor PNC and PM2.5 showed positive association with blood pressure and inverse association with eosinophil counts. CONCLUSIONS: The inverse association between personal exposure away from home and MVF is consistent with adverse health effects of UFP from sources outside the home and might be related to increased inflammation indicated by leukocyte counts, whereas UFP from sources in the home could have less effect.


Assuntos
Poluentes Atmosféricos/análise , Poluição do Ar em Ambientes Fechados/análise , Material Particulado/análise , Adulto , Idoso , Poluentes Atmosféricos/toxicidade , Poluição do Ar em Ambientes Fechados/efeitos adversos , Pressão Sanguínea , Proteína C-Reativa , Estudos Transversais , Dinamarca/epidemiologia , Monitoramento Ambiental , Feminino , Habitação , Humanos , Contagem de Leucócitos , Masculino , Pessoa de Meia-Idade , Tamanho da Partícula , Material Particulado/toxicidade , Fenômenos Fisiológicos Respiratórios
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA