Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 609(7925): 128-135, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35978188

RESUMO

Neurons are highly polarized cells that face the fundamental challenge of compartmentalizing a vast and diverse repertoire of proteins in order to function properly1. The axon initial segment (AIS) is a specialized domain that separates a neuron's morphologically, biochemically and functionally distinct axon and dendrite compartments2,3. How the AIS maintains polarity between these compartments is not fully understood. Here we find that in Caenorhabditis elegans, mouse, rat and human neurons, dendritically and axonally polarized transmembrane proteins are recognized by endocytic machinery in the AIS, robustly endocytosed and targeted to late endosomes for degradation. Forcing receptor interaction with the AIS master organizer, ankyrinG, antagonizes receptor endocytosis in the AIS, causes receptor accumulation in the AIS, and leads to polarity deficits with subsequent morphological and behavioural defects. Therefore, endocytic removal of polarized receptors that diffuse into the AIS serves as a membrane-clearance mechanism that is likely to work in conjunction with the known AIS diffusion-barrier mechanism to maintain neuronal polarity on the plasma membrane. Our results reveal a conserved endocytic clearance mechanism in the AIS to maintain neuronal polarity by reinforcing axonal and dendritic compartment membrane boundaries.


Assuntos
Segmento Inicial do Axônio , Polaridade Celular , Endocitose , Animais , Segmento Inicial do Axônio/metabolismo , Caenorhabditis elegans , Membrana Celular/metabolismo , Dendritos/metabolismo , Difusão , Endossomos/metabolismo , Humanos , Camundongos , Transporte Proteico , Proteólise , Ratos , Receptores de Superfície Celular/metabolismo
2.
Cell Mol Life Sci ; 80(10): 295, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37726569

RESUMO

Recently, the localization of amyloid precursor protein (APP) into reversible nanoscale supramolecular assembly or "nanodomains" has been highlighted as crucial towards understanding the onset of the molecular pathology of Alzheimer's disease (AD). Surface expression of APP is regulated by proteins interacting with it, controlling its retention and lateral trafficking on the synaptic membrane. Here, we evaluated the involvement of a key risk factor for AD, PICALM, as a critical regulator of nanoscale dynamics of APP. Although it was enriched in the postsynaptic density, PICALM was also localized to the presynaptic active zone and the endocytic zone. PICALM colocalized with APP and formed nanodomains with distinct morphological properties in different subsynaptic regions. Next, we evaluated if this localization to subsynaptic compartments was regulated by the C-terminal sequences of APP, namely, the "Y682ENPTY687" domain. Towards this, we found that deletion of C-terminal regions of APP with partial or complete deletion of Y682ENPTY687, namely, APP-Δ9 and APP-Δ14, affected the lateral diffusion and nanoscale segregation of APP. Lateral diffusion of APP mutant APP-Δ14 sequence mimicked that of a detrimental Swedish mutant of APP, namely, APP-SWE, while APP-Δ9 diffused similar to wild-type APP. Interestingly, elevated expression of PICALM differentially altered the lateral diffusion of the APP C-terminal deletion mutants. These observations confirm that the C-terminal sequence of APP regulates its lateral diffusion and the formation of reversible nanoscale domains. Thus, when combined with autosomal dominant mutations, it generates distinct molecular patterns leading to onset of Alzheimer's disease (AD).


Assuntos
Doença de Alzheimer , Artrogripose , Proteínas Monoméricas de Montagem de Clatrina , Humanos , Precursor de Proteína beta-Amiloide/genética , Doença de Alzheimer/genética , Mutação , Fatores de Risco , Proteínas Monoméricas de Montagem de Clatrina/genética
3.
Cell Mol Life Sci ; 78(15): 5807-5826, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34148098

RESUMO

The actin-binding protein vinculin is a major constituent of focal adhesion, but its role in neuronal development is poorly understood. We found that vinculin deletion in mouse neocortical neurons attenuated axon growth both in vitro and in vivo. Using functional mutants, we found that expression of a constitutively active vinculin significantly enhanced axon growth while the head-neck domain had an inhibitory effect. Interestingly, we found that vinculin-talin interaction was dispensable for axon growth and neuronal migration. Strikingly, expression of the tail domain delayed migration, increased branching, and stunted axon. Inhibition of the Arp2/3 complex or abolishing the tail domain interaction with actin completely reversed the branching phenotype caused by tail domain expression without affecting axon length. Super-resolution microscopy showed increased mobility of actin in tail domain expressing neurons. Our results provide novel insights into the role of vinculin and its functional domains in regulating neuronal migration and axon growth.


Assuntos
Actinas/metabolismo , Neocórtex/metabolismo , Neurônios/metabolismo , Talina/metabolismo , Vinculina/metabolismo , Animais , Axônios , Movimento Celular/fisiologia , Feminino , Adesões Focais/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ligação Proteica/fisiologia
4.
Cell Death Dis ; 15(7): 496, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38992005

RESUMO

Intracellular organelles support cellular physiology in diverse conditions. In the skin, epidermal keratinocytes undergo differentiation with gradual changes in cellular physiology, accompanying remodeling of lysosomes and the Golgi apparatus. However, it was not known whether changes in Golgi and lysosome morphology and their redistribution were linked. Here, we show that disassembled Golgi is distributed in close physical apposition to lysosomes in differentiated keratinocytes. This atypical localization requires the Golgi tethering protein GRASP65, which is associated with both the Golgi and lysosome membranes. Depletion of GRASP65 results in the loss of Golgi-lysosome apposition and the malformation of lysosomes, defined by their aberrant morphology, size, and function. Surprisingly, a trans-Golgi enzyme and secretory Golgi cargoes are extensively localized to the lysosome lumen and secreted to the cell surface, contributing to total protein secretion of differentiated keratinocytes but not in proliferative precursors, indicating that lysosomes acquire specialization during differentiation. We further demonstrate that the secretory function of the Golgi apparatus is critical to maintain keratinocyte lysosomes. Our study uncovers a novel form of Golgi-lysosome cross-talk and its role in maintaining specialized secretory lysosomes in differentiated keratinocytes.


Assuntos
Diferenciação Celular , Complexo de Golgi , Proteínas da Matriz do Complexo de Golgi , Queratinócitos , Lisossomos , Lisossomos/metabolismo , Queratinócitos/metabolismo , Queratinócitos/citologia , Complexo de Golgi/metabolismo , Humanos , Proteínas da Matriz do Complexo de Golgi/metabolismo , Proteínas da Matriz do Complexo de Golgi/genética , Proteínas de Membrana/metabolismo
5.
Int J Dev Biol ; 64(4-5-6): 343-352, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32658994

RESUMO

The epidermis, being the outermost epithelial layer in metazoans, experiences multiple external and self-generated mechanical stimuli. The tissue-scale response to these mechanical stresses has been actively studied in the adult stratified epidermis. However, the response of the developing bi-layered epidermis to differential tension and its molecular regulation has remained poorly characterised. Here we report an oil injection based method, which in combination with atomic force microscopy (AFM), allows manipulation as well as estimation of tension in the developing epidermis. Our results show that the injection of mineral oil into the brain ventricle of developing zebrafish embryos stretches the overlying epidermis. The epidermal tension increases linearly with the injected volume of oil and the injection of 14-17 nL oil results in a two-fold increase in epidermal tension. This increase in epidermal tension is sufficient to elicit a physiological response characterised by temporal changes in the cell cross-sectional area and an increase in cell proliferation. Our data further indicate that the depletion of E-cadherin in the epidermis is detrimental for tissue integrity under increased mechanical stress. The application of this experimental paradigm in a genetically tractable organism such as zebrafish can be useful in uncovering mechanisms of tension sustenance in the developing epidermis.


Assuntos
Caderinas/metabolismo , Embrião não Mamífero/metabolismo , Epiderme/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/metabolismo , Animais , Embrião não Mamífero/embriologia , Células Epidérmicas/metabolismo , Epiderme/embriologia , Microscopia de Força Atômica/métodos , Microscopia Confocal/métodos , Estresse Mecânico , Peixe-Zebra/embriologia
6.
Nanoscale ; 11(8): 3626-3632, 2019 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-30734810

RESUMO

Fluorescence-Activating and absorption-Shifting Tag (FAST) is a novel genetically encoded optical highlighter probe. Since the fluorescence of FAST originates from the stochastic and reversible diffusive association of a fluorogenic ligand, we investigate the application of FAST using Super-Resolution Radial Fluctuations (SRRF) to achieve routine imaging below the diffraction limit in a widefield epifluorescence microscope. We show that intensity fluctuation analysis like SRRF allows the imaging of FAST-tagged proteins with sub - 100 nm resolution in live cells. FAST co-labeled with conventional fluorophores enables real time multicolour 2D and 3D super-resolution imaging, indicating that FAST can be used for the observation of sub-diffraction limited structures in both living and fixed samples.


Assuntos
Corantes Fluorescentes/química , Proteínas de Fluorescência Verde/química , Animais , Linhagem Celular Tumoral , Proteínas de Fluorescência Verde/metabolismo , Camundongos , Microscopia de Fluorescência , Fotodegradação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA