Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biochem J ; 476(10): 1553-1570, 2019 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-31072910

RESUMO

Angiotensin-converting enzyme (ACE) is a zinc metalloprotease best known for its role in blood pressure regulation. ACE consists of two homologous catalytic domains, the N- and C-domain, that display distinct but overlapping catalytic functions in vivo owing to subtle differences in substrate specificity. While current generation ACE inhibitors target both ACE domains, domain-selective ACE inhibitors may be clinically advantageous, either reducing side effects or having utility in new indications. Here, we used site-directed mutagenesis, an ACE chimera and X-ray crystallography to unveil the molecular basis for C-domain-selective ACE inhibition by the bradykinin-potentiating peptide b (BPPb), naturally present in Brazilian pit viper venom. We present the BPPb N-domain structure in comparison with the previously reported BPPb C-domain structure and highlight key differences in peptide interactions with the S4 to S9 subsites. This suggests the involvement of these subsites in conferring C-domain-selective BPPb binding, in agreement with the mutagenesis results where unique residues governing differences in active site exposure, lid structure and dynamics between the two domains were the major drivers for C-domain-selective BPPb binding. Mere disruption of BPPb interactions with unique S2 and S4 subsite residues, which synergistically assist in BPPb binding, was insufficient to abolish C-domain selectivity. The combination of unique S9-S4 and S2' subsite C-domain residues was required for the favourable entry, orientation and thus, selective binding of the peptide. This emphasizes the need to consider factors other than direct protein-inhibitor interactions to guide the design of domain-selective ACE inhibitors, especially in the case of larger peptides.


Assuntos
Inibidores da Enzima Conversora de Angiotensina/química , Oligopeptídeos/química , Peptidil Dipeptidase A/química , Animais , Células CHO , Catálise , Cricetulus , Cristalografia por Raios X , Humanos , Mutagênese Sítio-Dirigida , Peptidil Dipeptidase A/genética , Domínios Proteicos
2.
medRxiv ; 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38798589

RESUMO

Hematopoietic Stem Cell Transplantation (HSCT) is one of the oldest and most successful immunotherapies. Yet, despite long-standing success in the use of HSCT for the treatment of blood cancers and severe immune disorders, monitoring post-transplant complications remains a challenge due to a lack of informative diagnostic tests. Here, we investigate the utility of cell-free RNA (cfRNA) in plasma as a liquid biopsy to monitor allogeneic HSCT recipients during and after treatment. We assayed longitudinal samples from 92 HSCT recipients by cfRNA sequencing and show that cfRNA provides insight into treatment and recovery trajectories, immune dynamics in response to transplantation, infection, and solid-tissue injury associated with Graft-Versus-Host Disease. Collectively, our results provide support for the use of plasma cfRNA profiling to monitor complications of HSCT.

3.
medRxiv ; 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38496479

RESUMO

Inflammatory syndromes, including those caused by infection, are a major cause of hospital admissions among children and are often misdiagnosed because of a lack of advanced molecular diagnostic tools. In this study, we explored the utility of circulating cell-free RNA (cfRNA) in plasma as an analyte for the differential diagnosis and characterization of pediatric inflammatory syndromes. We profiled cfRNA in 370 plasma samples from pediatric patients with a range of inflammatory conditions, including Kawasaki disease (KD), Multisystem Inflammatory Syndrome in Children (MIS-C), viral infections and bacterial infections. We developed machine learning models based on these cfRNA profiles, which effectively differentiated KD from MIS-C - two conditions presenting with overlapping symptoms - with high performance (Test Area Under the Curve (AUC) = 0.97). We further extended this methodology into a multiclass machine learning framework that achieved 81% accuracy in distinguishing among KD, MIS-C, viral, and bacterial infections. We further demonstrated that cfRNA profiles can be used to quantify injury to specific tissues and organs, including the liver, heart, endothelium, nervous system, and the upper respiratory tract. Overall, this study identified cfRNA as a versatile analyte for the differential diagnosis and characterization of a wide range of pediatric inflammatory syndromes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA