Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Materials (Basel) ; 15(13)2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35806752

RESUMO

In this review, the most recent advances in the field of magnetic composite photocatalysts with integrated plasmonic silver (Ag) is presented, with an overview of their synthesis techniques, properties and photocatalytic pollutant removal applications. Magnetic attributes combined with plasmonic properties in these composites result in enhancements for light absorption, charge-pair generation-separation-transfer and photocatalytic efficiency with the additional advantage of their facile magnetic separation from water solutions after treatment, neutralizing the issue of silver's inherent toxicity. A detailed overview of the currently utilized synthesis methods and techniques for the preparation of magnetic silver-integrated composites is presented. Furthermore, an extended critical review of the most recent pollutant removal applications of these composites via green photocatalysis technology is presented. From this survey, the potential of magnetic composites integrated with plasmonic metals is highlighted for light-induced water treatment and purification. Highlights: (1) Perspective of magnetic properties combined with plasmon metal attributes; (2) Overview of recent methods for magnetic silver-integrated composite synthesis; (3) Critical view of recent applications for photocatalytic pollutant removal.

2.
Nanomaterials (Basel) ; 12(19)2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36234418

RESUMO

In the current study, CoFe2O4 and TiO2 nanoparticles were primarily made using the sol-gel method, and subsequently, the hybrid magnetic composites of TiO2 loaded with CoFe2O4 (5-15 percent w/w) were made using a hydrothermal procedure. X-ray diffraction (XRD), Fourier transform infrared (FTIR) and Raman spectroscopy, ultraviolet-visible diffuse reflectance spectroscopy (UV-vis DRS), scanning electron microscopy (SEM), and high-resolution transmission electron microscopy (HRTEM) were all used to thoroughly characterize the materials. Additionally, the zero-charge point (ZCP) determination, the examination of the pore structure by nitrogen adsorption, and an evaluation of magnetic properties were performed. Six organic dye pollutants were selected to evaluate the performance of the synthesized nanocomposites toward photocatalytic degradation, including methylene blue (MB), methyl orange (MO), crystal violet (CV), acridine orange (AO), rhodamine B (RhB), and rhodamine 6G (R-6G). Photodegradation of tetracycline (TL), a model pharmaceutical pollutant, was also studied under UV and visible light. The composites exhibited a high degradation performance in all cases without using any oxidants. The photocatalytic degradation of tetracycline revealed that the CoFe2O4/TiO2 (5% w/w) composite exhibited a higher photocatalytic activity than either pure TiO2 or CoFe2O4, and thus attained 75.31% and 50.4% degradation efficiency under UV and visible light, respectively. Trapping experiments were conducted to investigate the photodegradation mechanism, which revealed that holes and super oxide radicals were the most active species in the photodegradation process. Finally, due to the inherent magnetic attributes of the composites, their easy removal from the treated solution via a simple magnet became possible.

3.
Materials (Basel) ; 13(20)2020 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-33092031

RESUMO

Novel V2O5 bifunctional photocatalysts were prepared following a wet chemical process with the addition of anionic or non-ionic surfactants into the precursor solution and further heating under reflux. Detailed characterization and investigation of the relevant light-matter interactions proved that surfactants addition had a strong impact on the morphology, while also affecting the crystallinity, the optoelectronic properties, and the surface chemistry of the novel photocatalysts. The most efficient photocatalyst (T80) was based on tween 80, a surface-active agent employed for the first time in the synthesis of vanadium oxide materials. T80 presented crystalline nature without structural defects, which are usually centers of e- - h+ recombination. This material also exhibited small crystal size, high porosity, and short migration paths for the charge carriers, enabling their effective separation during photocatalysis. Under UV light illumination, T80 was capable to reduce hexavalent chromium to trivalent up to 70% and showed high yields in degrading methylene blue azo-dye and tetracycline antibiotic water pollutants. This remarkably high bifunctional performance defines T80 as a promising and capable photocatalytic material for both advanced oxidation and reduction processes (AOPs-ARPs).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA