Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Arch Microbiol ; 203(1): 205-217, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32803347

RESUMO

Here, we have analysed and explored the genome sequences of three newly isolated bacteria that were recently characterised for their probiotic activities and ability to produce bacteriocins. These strains, isolated from faeces of animals living in captivity at the zoological garden of Lille (France), are Escherichia coli ICVB443, Enterococcus faecalis ICVB501 and Pediococcus pentosaceus ICVB491. Their genomes have been analysed and compared to those of their pathogenic or probiotic counterparts. The genome analyses of E. coli ICVB443 and Ent. faecalis ICVB501 displayed similarities to those of probiotics E. coli 1917 Nissle, and Ent. faecalis Symbioflor 1, respectively. Furthermore, E. coli ICVB443 shares at least 89 genes with the enteroaggregative E. coli 55989 (EAEC), and Ent. faecalis ICVB501 shares at least 315 genes with the pathogenic Ent. faecalis V583 strain. Unlike Ped. pentosaceus ICVB491, which is devoid of virulence genes, E. coli ICVB443 and Ent. faecalis ICVB501 both carry genes encoding virulence factors on their genomes. Of note, the bioinformatics analysis of these two genomes located the bsh gene, which codes for bile salt hydrolase (BSH). The presence of BSH is of major importance, as it can help to increase the viability of these two strains in the gastrointestinal tract (GIT). The genome analysis of Ped. pentosaceus ICVB491 confirmed its GRAS status (Generally Recognised As Safe), as no genomic virulence factor determinant was found.


Assuntos
Bactérias/genética , Bacteriocinas/genética , Fezes/microbiologia , Genoma Bacteriano/genética , Animais , Bactérias/patogenicidade , Simulação por Computador , Enterococcus faecalis/genética , Enterococcus faecalis/patogenicidade , Escherichia coli/genética , Escherichia coli/patogenicidade , Trato Gastrointestinal/microbiologia , Pediococcus pentosaceus/genética , Pediococcus pentosaceus/patogenicidade , Probióticos , Fatores de Virulência/genética
2.
Crit Rev Food Sci Nutr ; 60(20): 3387-3399, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31729242

RESUMO

Lactic acid-producing bacteria are the most commonly used probiotics that play an important role in protecting the host against harmful microorganisms, strengthening the host immune system, improving feed digestibility, and reducing metabolic disorders. Lactobacillus fermentum (Lb. fermentum) is a Gram-positive bacterium belonging to Lactobacillus genus, and many reportedly to enhance the immunologic response as well as prevent community-acquired gastrointestinal and upper respiratory infections. Additionally, Lb. fermentum strains produce diverse and potent antimicrobial peptides, which can be applied as food preservative agents or as alternatives to antibiotics. Further functions attributed to probiotic Lb. fermentum strains are their abilities to decrease the level of blood stream cholesterol (as cholesterol-lowering agents) and to potentially help prevent alcoholic liver disease and colorectal cancer among humans. Finally, Lb. fermentum is a key microorganism in sourdough technology, contributing to flavor, texture, or health-promoting dough ingredients, and has recently been used to develop new foods stuffs such as fortified and functional foods with beneficial attributes for human health. Development of such new foodstuffs are currently taking important proportions of the food industry market. Furthermore, an increasing awareness of the consumers prompts the food-makers to implement alternative environmental friendly solutions in the production processes and/or suitable biological alternative to limit the use of antibiotics in feed and food. Here, we give an account on the application of Lb. fermentum strains in the biomedical and food preservation fields, with a focus on probiotic features such as bacteriocin production. We also summarize the use of Lb. fermentum as cell factories with the aim to improve the efficacy and health value of functional food.


Assuntos
Lactobacillales , Limosilactobacillus fermentum , Probióticos , Bactérias , Conservação de Alimentos , Humanos
3.
Anaerobe ; 62: 102177, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32097777

RESUMO

Eleven strains of clostridia were isolated from chickens suffering from necrotic enteritis (NE) disease, and were identified by 16S rDNA sequencing as C. perfringens (Clin1, ICVB079, ICVB080, ICVB081, ICVB082, ICVB083, ICVB085, ICVB088, ICVB089, ICVB090), C. sporogenes (ICVB086) and C. cadaveris (ICVB087). These novel strains were then characterized for their pathoproperties including their sensitivity to different antibiotics, hemolytic activities and abilities to carry netB gene, which encodes the necrotic enteritis B-Like toxin (NetB); a key virulence factor involved in the NE. Whilst, no antibiotic resistance was detected for all these strains, C. perfringens ICVB081 and C. perfringens Clin1 have ß-hemolytic activities and carry DNA coding for the netB gene. Remarkably, cross-resistant assays performed between these Clostridium strains underpinned the capability of C. perfringens ICVB082 to inhibit the pathogenic C. perfringens DSM756, used as reference strain. This inhibition was exerted through production of an extracellular compound, which was sensitive to heat treatment, lipase and active at pH values ranging from 4 to 7. This report deals with the isolation of novel Clostridium strains from chicken origin and underlines the safety and inhibitory capability of C. perfringens ICVB082 through an extracellular metabolite.


Assuntos
Antibacterianos/farmacologia , Infecções por Clostridium/veterinária , Clostridium perfringens/efeitos dos fármacos , Clostridium perfringens/genética , Farmacorresistência Bacteriana , Genoma Bacteriano , Animais , Antibiose , Toxinas Bacterianas/genética , Clostridium perfringens/patogenicidade , Farmacorresistência Bacteriana Múltipla , Hemólise , Filogenia , Doenças das Aves Domésticas/microbiologia , RNA Ribossômico 16S , Virulência , Fatores de Virulência
4.
Int J Mol Sci ; 21(22)2020 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-33212803

RESUMO

Lacticaseibacillus paracasei CNCM I-5369, formerly Lactobacillus paracasei CNCM I-5369, produces bacteriocins that are remarkably active against Gram-negative bacteria, among which is the Escherichia coli-carrying mcr-1 gene that is involved in resistance to colistin. These bacteriocins present in the culture supernatant of the producing strain were extracted and semi-purified. The fraction containing these active bacteriocins was designated as E20. Further, E20 was loaded onto alginate nanoparticles (Alg NPs), leading to a highly active nano-antibiotics formulation named hereafter Alg NPs/E20. The amount of E20 adsorbed on the alginate nanoparticles was 12 wt.%, according to high-performance liquid chromatography (HPLC) analysis. The minimal inhibitory concentration (MIC) values obtained with E20 ranged from 250 to 2000 µg/mL, whilst those recorded for Alg NPs/E20 were comprised between 2 and 4 µg/mL, which allowed them to gain up to 500-fold in the anti-E. coli activity. The damages caused by E20 and/or Alg NPs/E20 on the cytology of the target bacteria were characterized by transmission electron microscopy (TEM) imaging and the quantification of intracellular proteins released following treatment of the target bacteria with these antimicrobials. Thus, loading these bacteriocins on Alg NPs appeared to improve their activity, and the resulting nano-antibiotics stand as a promising drug delivery system.


Assuntos
Alginatos , Antibacterianos , Bacteriocinas , Escherichia coli/crescimento & desenvolvimento , Lactobacillaceae/química , Nanopartículas/química , Alginatos/química , Alginatos/farmacologia , Antibacterianos/química , Antibacterianos/farmacologia , Bacteriocinas/química , Bacteriocinas/farmacologia
5.
Arch Microbiol ; 201(3): 399-407, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30719527

RESUMO

During this study, we characterized the seasonality's impact and environmental conditions on the yeast diversity from raw camel's milk collected in Algeria. The yeast counts were estimated to 3.55 × 102 CFU mL-1, with a maximum of 6.3 × 102 CFU mL-1. The yeasts were categorized phenotypically by API 20C AUX, MALDI-TOF and genetically by sequencing 26S rDNA and ITS1-5.8S-ITS2. The rDNA sequencing approaches revealed 12 species including unusual ones such as Trichosporon asahii, Pichia fermentans, Millerozyma farinosa, Pichia galeiformis, Candida tartarivorans and Pichia manshurica. The most dominant species were T. asahii (23%), P. fermentans (19%) and Rhodotorula mucilaginosa (14%). The high occurrence and large diversity were registered in samples collected during the autumn season, in the semi-arid and arid highlands regions with 0.66 × 103 CFU mL-1 and 0.51 × 103 CFU mL-1, respectively. Interestingly, T. asahii, R. mucilaginosa, P. fermentans, C. parapsilosis and C. zeylanoides were detected during both spring and autumn.


Assuntos
Camelus/microbiologia , Candida/isolamento & purificação , Leite/microbiologia , Pichia/isolamento & purificação , Rhodotorula/isolamento & purificação , Saccharomyces cerevisiae/isolamento & purificação , Leveduras/isolamento & purificação , Argélia , Animais , Candida/classificação , Candida/genética , DNA Fúngico/genética , DNA Ribossômico/genética , Pichia/classificação , Pichia/genética , Rhodotorula/classificação , Rhodotorula/genética , Saccharomyces cerevisiae/classificação , Saccharomyces cerevisiae/genética , Estações do Ano , Leveduras/classificação , Leveduras/genética
6.
Antonie Van Leeuwenhoek ; 110(2): 205-219, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27878401

RESUMO

Enterococcus faecalis B3A-B3B produces the bacteriocin B3A-B3B with activity against Listeria monocytogenes, Staphylococcus aureus, methicillin-resistant Staphylococcus aureus (MRSA) and Clostridium perfringens, but apparently not against fungi or Gram-negative bacteria, except for Salmonella Newport. B3A-B3B enterocin has two different nucleotides but similar amino acid composition to the class IIb MR10A-MR10B enterocin. B3A-B3B consists of two peptides of predicted molecular mass of 5176.31 Da (B3A) and 5182.21 Da (B3B). Importantly, B3A-B3B impeded biofilm formation of the foodborne pathogen L. monocytogenes 162 grown on stainless steel. The antimicrobial treatment of stainless steel with nisin (1 or 16 mg ml-1) decreased the cell numbers by about 2 log CFU ml-1, thereby impeding the biofilm formation by L. monocytogenes 162 or its nisin-resistant derivative strain L. monocytogenes 162R. Furthermore, the combination of nisin and B3A-B3B enterocin reduced the MIC required to inhibit this pathogen grown in planktonic or biofilm cultures.


Assuntos
Biofilmes/efeitos dos fármacos , Fezes/microbiologia , Microbiologia de Alimentos , Listeria monocytogenes/efeitos dos fármacos , Antibacterianos/isolamento & purificação , Antibacterianos/farmacologia , Hidrocarbonetos Aromáticos com Pontes/isolamento & purificação , Hidrocarbonetos Aromáticos com Pontes/farmacologia , Enterococcus faecalis/metabolismo , Humanos , Testes de Sensibilidade Microbiana , Nisina/farmacologia
7.
World J Microbiol Biotechnol ; 30(4): 1207-17, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24189971

RESUMO

Nine lactic acid bacteria strains showing bacteriocin-like activity were isolated from various fresh fish viscera. The following species were identified based on 16S rDNA sequences: Enterococcus durans (7 isolates), Lactococcus lactis (1) and Enterococcus faecium (1). These strains were active against Listeria innocua and other LAB. Random amplified polymorphic DNA analyses showed four major patterns for the E. durans species. PCR analyses revealed a nisin gene in the genome of the Lc. lactis strain. Genes coding enterocins A, B and P were found in the genome of the E. faecium isolate. Enterocins A and B genes were also present in the genome of E. durans GM19. Hence, this is the first report describing E. durans strains producing enterocins A and B. Electrospray ionization mass spectrometry revealed that the purified bacteriocin produced by the E. durans GMT18 strain had an exact molecular mass of 6,316.89 Da. This bacteriocin was designated as durancin GMT18. Edman sequencing failed to proceed; suggesting that durancin GTM18 may contain terminal lanthionine residues. Overall, the results obtained revealed the presence of a variety of enterococci in Mediterranean fish viscera, as evidenced by their genetic profiles and abilities to produce different bacteriocins. These strains could be useful for food biopreservation or as probiotics.


Assuntos
Bacteriocinas/metabolismo , Peixes/microbiologia , Lactobacillales/classificação , Lactobacillales/metabolismo , Animais , Análise por Conglomerados , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Ácido Láctico/metabolismo , Lactobacillales/genética , Lactobacillales/isolamento & purificação , Mar Mediterrâneo , Dados de Sequência Molecular , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Vísceras/microbiologia
8.
Braz J Microbiol ; 55(1): 699-710, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38253975

RESUMO

Weissella cibaria W21, W25, and W42 strains have previously been characterized for their antagonism against a range of foodborne pathogens. However, prior to their use as protective agents, further analyses such as their safety and in situ activity are needed. The safety of W. cibaria W21, W25, and W42 strains was predicted in silico and confirmed experimentally. Analyses of their genomes using appropriate software did not reveal any acquired antimicrobial resistance genes, nor mobile genetic elements (MGEs). The survival of each strain was determined in vitro under conditions mimicking the gastrointestinal tract (GIT). Thus, hemolysis analysis was performed using blood agar and the cytotoxicity assay was determined using a mixture of two cell lines (80% of Caco-2 and 20% of HT-29). We also performed the inflammation and anti-inflammation capabilities of these strains using the promonocytic human cell line U937. The Weissella strains were found to be haemolysis-negative and non-cytotoxic and did not induce any inflammation. Furthermore, these strains adhered tightly to intestinal Caco-2 cell-lines and exerted in situ anti-proliferative activity against methicillin-resistant Staphylococcus aureus (strain MRSA S1) and Escherichia coli 181, a colistin-resistant strain. However, the W. cibaria strains showed low survival rate under simulated GIT conditions in vitro. The unusual LAB-strains W. cibaria strains W21, W25, and W42 are safe and endowed with potent antibacterial activities. These strains are therefore good candidates for industrial applications. The results of this study provide a characterization and insights into Weissella strains, which are considered unusual LAB, but which prompt a growing interest in their bio-functional properties and their potential industrial applications.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Weissella , Humanos , Weissella/genética , Weissella/metabolismo , Brasil , Células CACO-2 , Fazendas , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Inflamação
9.
Foods ; 13(3)2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38338504

RESUMO

Lactiplantibacillus plantarum OV50 is a novel strain that was isolated from Algerian olives. Prior to its use as a natural biopreservative, OV50 underwent characterization for various functions. OV50 shows no proteolytic, lipolytic, or hemolytic activity. In addition, it is non-cytotoxic to eukaryotic cells and does not exhibit acquired antibiotic resistance. OV50 was tested with Pseudomonas aeruginosa ATCC 27835, Staphylococcus aureus ATCC 6538, Escherichia coli ATCC 8739, and Vibrio cholerae ATCC 14035 in a sardine based-medium at 37 °C and 7 °C. At 37 °C, OV50 completely inhibited the growth of these foodborne pathogens for a maximum of 6 h. At 7 °C, it suppressed their growth for a maximum of 8 days, except for S. aureus ATCC 6538, whose growth was reduced from 4 to 2 log CFU/mL. Microbiological counts, total volatile basic nitrogen (TVB-N), and peroxide values (PV) concentrations were determined in fresh sardines inoculated with OV50 and kept at 7 °C for 12 days. The inoculated sardines showed a significant reduction in TVB-N levels at D8 (34.9 mg/100 g) compared to the control (59.73 mg/100 g) and in PV concentrations at D4 (6.67 meq/kg) compared to the control (11.44 meq/kg), as well as a significant reduction in the numbers of Enterobacterales, Coliforms, Pseudomonas spp., Vibrio spp., and S. aureus At D8 and D12 compared to the control. Taken together, these results indicate that OV50 can improve the microbiological safety, freshness, and quality of sardines.

10.
Antibiotics (Basel) ; 12(7)2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37508284

RESUMO

Enterocin DD14 (EntDD14) is a two-peptide leaderless bacteriocin (LLB) produced by Enterococcus faecalis 14, a human strain isolated from meconium. Studies performed on EntDD14 enabled it to show its activity against Gram-positive bacteria such as Listeria monocytogenes, Clostridium perfringens, Enterococcus faecalis, and Staphylococcus aureus. EntDD14 was also shown to potentiate the activity of different antibiotics such as erythromycin, kanamycin, and methicillin when assessed against methicillin-resistant Staphylococcus aureus (MRSA) in vitro and in vivo in the NMRI-F holoxenic mouse model. Additionally, EntDD14 has an antiviral activity and decreased the secretion of pro-inflammatory IL-6 and IL-8 in inflamed human intestinal Caco-2 cells. The genome of E. faecalis 14 was sequenced and annotated. Molecular tools such as Bagel4 software enabled us to locate a 6.7kb-EntDD14 cluster. Transport of EntDD14 outside of the cytoplasm was shown to be performed synergistically by a channel composed of two pleckstrin-homology-domain-containing proteins, namely DdE/DdF and the ABC transporter DdGHIJ. This latter could also protect the bacteriocinogenic strain against extracellular EntDD14. Here, we focus on academic data and potential therapeutic issues of EntDD14, as a model of two-peptide LLB.

11.
Probiotics Antimicrob Proteins ; 14(4): 613-619, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35604525

RESUMO

In this study, we investigate the interactions between the leaderless class IIb bacteriocin, enterocin DD14 (EntDD14), or the methicillin or the combination of these antibacterials, and two methicillin-resistant Staphylococcus aureus strains (MRSA-S1 and USA 300) which are respectively a clinical strain and a reference strain. The results obtained showed that EntDD14 alone or in combination with the antibiotic could significantly prevent the adhesion of these pathogenic bacteria to human cells. On the other hand, we investigated the anti-inflammatory effect of EntDD14 on the secretion of pro-inflammatory interleukins, including IL-6 and IL-8. The results show that EntDD14 is able to decrease significantly the secretion of both interleukins on Caco-2 cells following their treatments with lipopolysaccharides. These novel data provide insightful informations to support applications of bacteriocins as therapeutic agents capable as well to defeat pathogenic bacteria and concomitantly limit their inflammatory reactions.


Assuntos
Bacteriocinas , Staphylococcus aureus Resistente à Meticilina , Antibacterianos/farmacologia , Anti-Inflamatórios/farmacologia , Bactérias , Bacteriocinas/farmacologia , Hidrocarbonetos Aromáticos com Pontes , Células CACO-2 , Humanos
12.
Pharmaceuticals (Basel) ; 15(6)2022 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-35745601

RESUMO

Bacterial resistance to antibiotics has become a major public health problem worldwide, with the yearly number of deaths exceeding 700,000. To face this well-acknowledged threat, new molecules and therapeutic methods are considered. In this context, the application of nanotechnology to fight bacterial infection represents a viable approach and has experienced tremendous developments in the last decades. Escherichia coli (E. coli) is responsible for severe diarrhea, notably in the breeding sector, and especially in pig farming. The resulting infection (named colibacillosis) occurs in young piglets and could lead to important economic losses. Here, we report the design of several new formulations based on colistin loaded on alginate nanoparticles (Alg NPs) in the absence, but also in the presence, of small molecules, such as components of essential oils, polyamines, and lactic acid. These new formulations, which are made by concomitantly binding colistin and small molecules to Alg NPs, were successfully tested against E. coli 184, a strain resistant to colistin. When colistin was associated with Alg NPs, the minimal inhibition concentration (MIC) decreased from 8 to 1 µg/mL. It is notable that when menthol or lactic acid was co-loaded with colistin on Alg NPs, the MIC of colistin drastically decreased, reaching 0.31 or 0.62 µg/mL, respectively. These novel bactericidal formulations, whose innocuity towards eukaryotic HT-29 cells was established in vitro, are presumed to permeabilize the bacterial membrane and provoke the leakage of intracellular proteins. Our findings revealed the potentiating effect of the Alg NPs on colistin, but also of the small molecules mentioned above. Such ecological and economical formulations are easy to produce and could be proposed, after confirmation by in vivo and toxicology tests, as therapeutic strategies to replace fading antibiotics.

13.
Antibiotics (Basel) ; 11(6)2022 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-35740193

RESUMO

Dermaseptin B2 (DRS-B2) is an antimicrobial peptide secreted by Phyllomedusa bicolor, which is an Amazonian tree frog. Here, we show that the adsorption of DRS-B2 on alginate nanoparticles (Alg NPs) results in a formulation (Alg NPs + DRS-B2) with a remarkable antibacterial activity against Escherichia coli ATCC 8739 and E. coli 184 strains, which are sensitive and resistant, respectively, to colistin. The antibacterial activity, obtained with this new formulation, is higher than that obtained with DRS-B2 alone. Of note, the addition of lactic acid or menthol to this new formulation augments its antibacterial activity against the aforementioned Gram-negative bacilli. The safety of DRS-B2, and also that of the new formulation supplemented or not with a small molecule such as lactic acid or menthol has been proven on the human erythrocytes and the eukaryotic cell line types HT29 (human) and IPEC-1 (animal). Similarly, their stability was determined under the conditions mimicking the gastrointestinal tract with different conditions: pH, temperature, and the presence of digestive enzymes. Based on all the obtained data, we assume that these new formulations are promising and could be suggested, after in vivo approval and completing regulation aspects, as alternatives to antibiotics to fight infections caused by Gram-negative bacilli such as E. coli.

14.
Microorganisms ; 10(1)2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-35056601

RESUMO

The present study aimed to show the benefits of novel lactic acid bacteria (LAB) strains isolated from the caeca of healthy chickens. These novel strains, identified as Limosilactobacillus reuteri and Ligilactobacillus salivarius, displayed high levels of lactic acid production, capability of biofilm formation, high aggregation and adhesion scores, and significant survival rates under conditions mimicking the chicken gastrointestinal tract (GIT). In addition, these novel Lactobacillaceae isolates were neither hemolytic nor cytotoxic. In vivo trials were able to establish their ability to reduce necrotic enteritis. Notably, a significant weight gain was registered, on day 10 of treatment, in the group of chickens fed with a mixture of L. reuteri ICVB416 and L. salivarius ICVB430 strains, as compared with the control group. This group has also shown a reduced number of lesions in the gut compared with other infected chicken groups. This study provides in vitro and in vivo evidence supporting the benefits of these novel Lactobacillaceae isolates for their use in poultry livestock as protective cultures to control the bacterial necrotic enteritis (NE) Clostridium perfringens.

15.
Vet Microbiol ; 266: 109359, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35121303

RESUMO

Colistin is frequently used for the control of post-weaning diarrhoea in pigs. Colistin resistance caused by plasmidic genes is a public health issue. We evaluated, in experimental animal facilities, whether free colistin or colistin-loaded on alginate nanoparticles (colistin/Alg NPs) could select a colistin-resistant Enterotoxigenic Escherichia coli. The Alg NPs were produced by a simple top-down approach through ball milling of sodium alginate polymer precursor, and colistin loading was achieved through physical adsorption. Colistin loading on Alg NPs was confirmed using various tools such Fourier transform infrared spectroscopy and dynamic light scattering measurements. Thirty-four piglets were orally inoculated or not with a mcr-1-positive, rifampicin-resistant enterotoxigenic E. coli strain, and the inoculated pigs were either treated or not during five days with commercial colistin (100,000 IU/kg) or colistin/Alg NPs (40,415 IU/kg). Clinical signs were recorded. Fecal and post-mortem samples were analyzed by culture. The result clearly indicated that colistin/Alg NPs had a slightly better therapeutic effect. Both treatments led to a transitory decrease of the total E. coli fecal population with a majority of colistin-resistant E. coli isolates during treatment, but the dominant E. coli population was found susceptible at the end of the trial. Further studies are needed to evaluate, in diverse experimental or field conditions, the therapeutic efficacy of colistin/Alg NPs for post-weaning diarrhoea.


Assuntos
Escherichia coli Enterotoxigênica , Infecções por Escherichia coli , Proteínas de Escherichia coli , Nanopartículas , Alginatos , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Colistina/farmacologia , Escherichia coli Enterotoxigênica/genética , Infecções por Escherichia coli/tratamento farmacológico , Infecções por Escherichia coli/veterinária , Proteínas de Escherichia coli/genética , Suínos
16.
Probiotics Antimicrob Proteins ; 13(4): 1213-1227, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33481224

RESUMO

Here, we report a novel approach to improve the anti-Clostridium perfringens activity of the leaderless two-peptide enterocin 14 (EntDD14), produced by Enterococcus faecalis 14. This strategy consists of loading EntDD14 onto alginate nanoparticles (Alg NPs), which are made of a safe polymer. The resulting formulation (EntDD14/Alg NPs) was able to reduce up to four times the minimum inhibitory concentration (MIC) of EntDD14 against C. perfringens pathogenic strains isolated from a chicken affected by necrotic enteritis (NE). Interestingly, this formulation remained active under conditions mimicking the human and chicken gastric tract. Assays conducted to establish the impact of this formulation on the intestinal epithelial cell line Caco-2 and the human colorectal adenocarcinoma cell line HT29 revealed the absence of cytotoxicity of both free-EntDD14 and EntDD14 loaded onto the alginate nanoparticles (EntDD14/Alg NPs) against the aforementioned eukaryotic cells, after 24 h of contact. Notably, EntDD14 and EntDD14/Alg NPs, both at a sub-inhibitory concentration, affected the expression of genes coding for clostridial toxins such as toxin α, enteritis B-like toxin, collagen adhesion protein and thiol-activated cytolysin. Further, expression of these genes was significantly down-regulated following the addition of EntDD14/Alg NPs, but not affected upon addition of EntDD14 alone. This study revealed that adsorption of EntDD14 onto Alg NPs leads to a safe and active formulation (EntDD14/Alg NPs) capable of affecting the pathogenicity of C. perfringens. This formulation could therefore be used in the poultry industry as a novel approach to tackle NE.


Assuntos
Alginatos , Enterite , Nanopartículas , Peptídeos/farmacologia , Animais , Hidrocarbonetos Aromáticos com Pontes/farmacologia , Células CACO-2 , Galinhas , Clostridium perfringens/genética , Células HT29 , Humanos , Fatores de Virulência/genética
17.
Microbiol Res ; 252: 126864, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34521050

RESUMO

Biofilm formation by pathogenic bacteria as well as their resilience to antibiotic treatments are a major health problem. Here, we sequenced and analyzed the genome of the clinical methicillin-resistant Staphylococcus aureus S1 (MRSA-S1) strain and established its sensitivity to the combination of methicillin and the leaderless two peptides enterocin DD14 (EntDD14). Such sensitivity was assessed in vitro based on the MIC/FIC values as well as on killing curves experiments. Moreover, combination of EntDD14 and methicillin was able to reduce the biofilm formation of Staphylococcus aureus S1 of about ∼30 %. Interestingly, genes thought to be involved in the virulence of MRSA-S1, like nuc and pvl which code, respectively, for nuclease and Panton-Valentine leucocidin, were shown to be downregulated following treatment with EntDD14 and methicillin. Similar effects were registered for other genes such as cflA, cflB and icaB, coding for bacterial ligands clumping factors A, B and intercellular adhesion factor respectively. All these data, suggest that combinations of bacteriocins and antibiotics are useful as a backup for treatment of bacterial infections.


Assuntos
Farmacorresistência Bacteriana , Sinergismo Farmacológico , Staphylococcus aureus Resistente à Meticilina , Meticilina , Hidrocarbonetos Aromáticos com Pontes/farmacologia , Farmacorresistência Bacteriana/efeitos dos fármacos , Meticilina/farmacologia , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos
18.
Antibiotics (Basel) ; 11(1)2021 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-35052897

RESUMO

Antimicrobial resistance is a global health concern across the world and it is foreseen to swell if no actions are taken now. To help curbing this well announced crisis different strategies are announced, and these include the use of antimicrobial peptides (AMP), which are remarkable molecules known for their killing activities towards pathogenic bacteria. Bacteriocins are ribosomally synthesized AMP produced by almost all prokaryotic lineages. Bacteriocins, unlike antibiotics, offer a set of advantages in terms of cytotoxicity towards eukaryotic cells, their mode of action, cross-resistance and impact of microbiota content. Most known bacteriocins are produced by Gram-positive bacteria, and specifically by lactic acid bacteria (LAB). LAB-bacteriocins were steadily reported and characterized for their activity against genetically related Gram-positive bacteria, and seldom against Gram-negative bacteria. The aim of this study is to show that lacticaseicin 30, which is one of the bacteriocins produced by Lacticaseibacillus paracasei CNCM I-5369, is active against Gram-negative clinical strains (Salmonella enterica Enteritidis H10, S. enterica Typhimurium H97, Enterobacter cloacae H51, Escherichia coli H45, E. coli H51, E. coli H66, Klebsiella oxytoca H40, K. pneumoniae H71, K. variicola H77, K. pneumoniae H79, K. pneumoniae H79), whereas antibiotics failed. In addition, lacticaseicin 30 and colistin enabled synergistic interactions towards the aforementioned target Gram-negative clinical strains. Further, the combinations of lacticaseicin 30 and colistin prompted a drastic downregulation of mcr-1 and mcr-9 genes, which are associated with the colistin resistance phenotypes of these clinical strains. This report shows that lacticaseicin 30 is active against Gram-negative clinical strains carrying a rainbow of mcr genes, and the combination of these antimicrobials constitutes a promising therapeutic option that needs to be further exploited.

19.
Probiotics Antimicrob Proteins ; 13(1): 218-228, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32388703

RESUMO

This study aimed at exploring droppings of animals living in captivity in the zoological garden (Zoo) of Lille (France), as novel sources of bacteriocinogenic strains. A collection of 295 bacterial isolates was constituted from droppings of capybara, alpaca, muntjac, zebra, tapir, rhinoceros, binturong, armadillo, saki monkey and cockatoo. Of 295 isolates, 51 exhibited antagonism against a panel of pathogenic target bacteria like Escherichia coli MC4100, Clostridium perfringens DSM 756 and Salmonella enterica subsp. enterica Newport ATCC6962. Remarkably, within this collection, only 2 Gram-negative bacilli exhibited activity against E. coli MC4100 strain used as target organism. Then, the 16S rDNA sequencing revealed these thereafter cited species, Pediococcus pentosaceus, Weissella cibaria, E. coli, Lactobacillus reuteri, Enterococcus hirae and Enterococcus faecalis. Characterization of this antagonism has revealed 11 strains able producing extracellular protease-sensitive inhibitory compounds. These strains included E. coli ICVB442 and ICVB443, Ent. faecalis ICVB472, ICVB474, ICVB477 ICVB479, ICVB481, ICVB497 and ICVB501 and Ped. pentosaceus ICVB491 and ICVB492. The genomes of the 5 most promising bacteriocinogenic strains were sequenced and analysed with Bagel4 software. Afterwards, this bioinformatics analysis permitted to locate genes encoding bacteriocins like colicin Y (E. coli), enterocin 1071A, enterocin 107 B (Ent. faecalis) and penocin A (Ped. pentosaceus), associating the above-mentioned antibacterial activity of proteinaceous nature to possible production of bacteriocins. All these results enabled us to select different bacteriocinogenic strains for a further characterization in terms of beneficial traits.


Assuntos
Animais de Zoológico/microbiologia , Bactérias , Bacteriocinas , Biodiversidade , Fezes/microbiologia , Filogenia , Animais , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Bactérias/metabolismo , Bacteriocinas/biossíntese , Bacteriocinas/genética , França
20.
Probiotics Antimicrob Proteins ; 13(1): 208-217, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32712896

RESUMO

Bacteriocin-producing Escherichia coli ICVB442, E. coli ICVB443, Enterococcus faecalis ICVB497, E. faecalis ICVB501, and Pediococcus pentosaceus ICVB491 strains were examined for their pathogenic risks and compatibility and hence suitability as consortium probiotic bacteria. Except for E. coli ICVB442, all were inclined to form biofilm. All were gelatinase-negative, sensitive to most of the antibiotics tested and not cytotoxic to porcine intestinal epithelial cells (IPEC-1) when tested at a multiplicity of infection (MOI) of 1. P. pentosaceus ICVB491 stood apart by inhibiting the other four strains. Both E. coli strains and E. faecalis ICVB497 strain were ß-hemolytic. Survival in the TIM-1 dynamic model of the human digestive system was 139% for the tested E. coli ICVB443 strain, 46% for P. pentosaceus ICVB491, and 32% for the preferred E. faecalis ICVB501 strain. These three potential probiotics, which are bacteriocin-producing strains, will be considered for simultaneous use as consortium with synergistic interactions in vivo on animal model.


Assuntos
Ração Animal/parasitologia , Bacteriocinas/biossíntese , Biofilmes/crescimento & desenvolvimento , Enterococcus faecalis/fisiologia , Escherichia coli/fisiologia , Intestinos/microbiologia , Gado , Consórcios Microbianos , Pediococcus pentosaceus/fisiologia , Probióticos , Animais , Linhagem Celular , Humanos , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA