Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small ; : e2004047, 2020 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-33090682

RESUMO

Molybdenum sulfide emerged as promising hydrogen evolution reaction (HER) electrocatalyst thanks to its high intrinsic activity, however its limited active sites exposure and low conductivity hamper its performance. To address these drawbacks, the non-equilibrium nature of pulsed laser deposition (PLD) is exploited to synthesize self-supported hierarchical nanoarchitectures by gas phase nucleation and sequential attachment of defective molybdenum sulfide clusters. The physics of the process are studied by in situ diagnostics and correlated to the properties of the resulting electrocatalyst. The as-synthesized architectures have a disordered nanocrystalline structure, with nanodomains of bent, defective S-Mo-S layers embedded in an amorphous matrix, with excess sulfur and segregated molybdenum particles. Oxygen incorporation in this structure fosters the creation of amorphous oxide/oxysulfide nanophases with high electrical conductivity, enabling fast electron transfer to the active sites. The combined effect of the nanocrystalline pristine structure and the surface oxidation enhances the performance leading to small overpotentials, very fast kinetics (35.1 mV dec-1 Tafel slope) and remarkable long-term stability for continuous operation up to -1 A cm-2. This work shows possible new avenues in catalytic design arising from a non-equilibrium technique as PLD and the importance of structural and chemical control to improve the HER performance of MoS-based catalysts.

3.
Chemistry ; 26(3): 691-698, 2020 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-31674083

RESUMO

Metal-organic frameworks (MOFs) are a promising class of materials for many applications, due to their high chemical tunability and superb porosity. By growing MOFs as (thin-)films, additional properties and potential applications become available. Here, copper (II) 1,3,5-benzenetricarboxylate (Cu-BTC) metal-organic framework (MOF) thin-films are reported, which were synthesized by spin-coating, resulting in "nanowebs", that is, fiber-like structures. These surface-mounted MOFs (SURMOFs) were studied by using photoinduced force microscopy (PiFM) and time-of-flight secondary ion mass spectrometry (ToF-SIMS). The optimal concentration of precursors (10 mm) was determined that resulted in chemically homogeneous, pure nanowebs. Furthermore, the morphology and (un)coordinated Cu sites in the web were tuned by varying the rotation speed of the spin-coating process. X-ray diffraction (XRD) analysis showed that rotation speeds ≥2000 rpm (with precursors in a water/ethanol solution) generate the catena-triaqua-µ-(1,3,5-benzenetricarboxylate)-copper(II), or Cu(BTC)(H2 O)3 coordination polymer. X-ray photoelectron spectroscopy (XPS) highlighted the strong decrease in number of (defective) Cu+ sites, as the nanowebs mainly consist of coordinated Cu2+ Lewis acid sites (LAS) and organic linker-linker, for example, hydrogen-bonding, interactions. Finally, the Lewis-acidic character of the Cu sites is illustrated by testing the films as catalysts in the isomerization of α-pinene oxide. The higher number of LAS (≥3000 rpm), result in higher campholenic aldehyde selectivity reaching up to 87.7 %. Furthermore, the strength of a combined micro- and spectroscopic approach in understanding the nature of MOF thin-films in a spatially resolved manner is highlighted.

4.
Nanotechnology ; 31(46): 465302, 2020 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-32857734

RESUMO

We demonstrate a simple three-step gold thin-film sample preparation process to enhance the morphology and lithographic precision using helium ion based direct-writing. The procedure includes metal deposition, heat treatment and template stripping, which produce smooth monocrystalline gold grains with sizes up to 500 nm and an average surface roughness of 0.267 nm. By using a helium ion microscope, we can fabricate structures with feature sizes less than 20 nm in a 100 nm thick gold film with high-quality sidewalls. We demonstrate the efficacy of this technique by producing high-quality double nanohole (DNH) nanoapertures for single nanoparticle trapping in a single grain of 100 nm thick gold. This procedure can be applied to a wide range of antenna geometries and features that need to be fabricated producing optical and or electronic devices.

5.
Anal Chem ; 91(19): 12142-12148, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31483617

RESUMO

Chemical analysis at the nanoscale is critical to advance our understanding of materials and systems from medicine and biology to material science and computing. Macroscale-observed phenomena in these systems are in the large part driven by processes that take place at the nanoscale and are highly heterogeneous. Therefore, there is a clear need to develop a new technology that enables correlative imaging of material functionalities with nanoscale spatial and chemical resolutions that will enable us to untangle the structure-function relationship of functional materials. Therefore, here, we report on the analytical figures of merit of the newly developed correlative chemical imaging technique of helium ion microscopy coupled with secondary ion mass spectrometry (HIM-SIMS) that enables multimodal topographical/chemical imaging of organic and inorganic materials at the nanoscale. In HIM-SIMS, a focused ion beam acts as a sputtering and ionization source for chemical analysis along with simultaneous high-resolution surface imaging, providing an unprecedented level of spatial resolution for gathering chemical information on organic and inorganic materials. In this work, we demonstrate HIM-SIMS as a platform for a next-generation tool for an in situ material design and analysis capable of down to 8 nm spatial resolution chemical imaging, layered metal structure imaging in depth profiling, single graphene layer detection, and spectral analysis of metals, metal oxides, and polymers.

6.
Anal Chem ; 91(4): 2791-2796, 2019 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-30672686

RESUMO

Seed coatings improve germination and offer higher crop yields through a blend of active ingredients (such as insecticides and fungicides), polymers, waxes, fillers, and pigments. To reach their full potential, fundamental formulation challenges bridging structure and function need to be addressed. In some instances, during industrial-volume packing and transportation, coated seeds do not flow well through elevators, conveyers, and applicators, which may reduce yield and add cost. In this work, we illustrate a combinatorial chemical imaging approach to study seed coatings at the microscale to link chemical and physical properties responsible for low seed flowability. The local chemical composition was examined using time-of-flight secondary ion mass spectrometry (ToF-SIMS) and at comparable length scales, the local adhesive properties were examined using atomic force microscopy (AFM) force volume mapping. The link between the chemical and the adhesive properties was established by non-negative matrix factorization (NMF). The correlative multimodal imaging approach developed here utilizing AFM force volume mapping, ToF-SIMS chemical mapping, and data analytics offers a path for linking function with localized chemistry when investigating multicomponent soft material systems.

7.
Nat Mater ; 17(11): 1013-1019, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30150621

RESUMO

The extraordinary optoelectronic performance of hybrid organic-inorganic perovskites has resulted in extensive efforts to unravel their properties. Recently, observations of ferroic twin domains in methylammonium lead triiodide drew significant attention as a possible explanation for the current-voltage hysteretic behaviour in these materials. However, the properties of the twin domains, their local chemistry and the chemical impact on optoelectronic performance remain unclear. Here, using multimodal chemical and functional imaging methods, we unveil the mechanical origin of the twin domain contrast observed with piezoresponse force microscopy in methylammonium lead triiodide. By combining experimental results with first principles simulations we reveal an inherent coupling between ferroelastic twin domains and chemical segregation. These results reveal an interplay of ferroic properties and chemical segregation on the optoelectronic performance of hybrid organic-inorganic perovskites, and offer an exploratory path to improving functional devices.

8.
Anal Chem ; 90(2): 1370-1375, 2018 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-29227631

RESUMO

Nanoporous materials are key components in a vast number of applications from energy to drug delivery and to agriculture. However, the number of ways to analytically quantify the salient features of these materials, for example: surface structure, pore shape, and size, remain limited. The most common approach is gas absorption, where volumetric gas absorption and desorption are measured. This technique has some fundamental drawbacks such as low sample throughput and a lack of direct surface visualization. In this work, we demonstrate Helium Ion Microscopy (HIM) as a tool for imaging and quantification of pores in industrially relevant SiO2 catalyst supports. We start with the fundamental principles of ion-sample interaction, and build on this knowledge to experimentally observe and quantify surface pores by using the HIM and image data analytics. We contrast our experimental results to gas absorption and demonstrate full statistical agreement between two techniques. The principles behind the theoretical, experimental, and analytical framework presented herein offer an automated framework for visualization and quantification of pore structures in a wide variety of materials.

9.
Nano Lett ; 16(6): 3630-7, 2016 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-27203453

RESUMO

The mechanical reinforcement of polymer nanocomposites (PNCs) above the glass transition temperature, Tg, has been extensively studied. However, not much is known about the origin of this effect below Tg. In this Letter, we unravel the mechanism of PNC reinforcement within the glassy state by directly probing nanoscale mechanical properties with atomic force microscopy and macroscopic properties with Brillouin light scattering. Our results unambiguously show that the "glassy" Young's modulus in the interfacial polymer layer of PNCs is two-times higher than in the bulk polymer, which results in significant reinforcement below Tg. We ascribe this phenomenon to a high stretching of the chains within the interfacial layer. Since the interfacial chain packing is essentially temperature independent, these findings provide a new insight into the mechanical reinforcement of PNCs also above Tg.

10.
J Am Chem Soc ; 138(15): 5028-35, 2016 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-26931634

RESUMO

Organometallic halide perovskites (OHPs) hold great promise for next-generation, low-cost optoelectronic devices. During the chemical synthesis and crystallization of OHP thin films, a major unresolved question is the competition between multiple halide species (e.g., I(-), Cl(-), Br(-)) in the formation of the mixed-halide perovskite crystals. Whether Cl(-) ions are successfully incorporated into the perovskite crystal structure or, alternatively, where they are located is not yet fully understood. Here, in situ X-ray diffraction measurements of crystallization dynamics are combined with ex situ TOF-SIMS chemical analysis to reveal that Br(-) or Cl(-) ions can promote crystal growth, yet reactive I(-) ions prevent them from incorporating into the lattice of the final perovskite crystal structure. The Cl(-) ions are located in the grain boundaries of the perovskite films. These findings significantly advance our understanding of the role of halogens during synthesis of hybrid perovskites and provide an insightful guidance to the engineering of high-quality perovskite films, essential for exploring superior-performing and cost-effective optoelectronic devices.

11.
Nanotechnology ; 27(10): 105706, 2016 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-26866505

RESUMO

Since its inception over two decades ago, Kelvin probe force microscopy (KPFM) has become the standard technique for characterizing electrostatic, electrochemical and electronic properties at the nanoscale. In this work, we present a purely digital, software-based approach to KPFM utilizing big data acquisition and analysis methods. General mode (G-Mode) KPFM works by capturing the entire photodetector data stream, typically at the sampling rate limit, followed by subsequent de-noising, analysis and compression of the cantilever response. We demonstrate that the G-Mode approach allows simultaneous multi-harmonic detection, combined with on-the-fly transfer function correction-required for quantitative CPD mapping. The KPFM approach outlined in this work significantly simplifies the technique by avoiding cumbersome instrumentation optimization steps (i.e. lock in parameters, feedback gains etc), while also retaining the flexibility to be implemented on any atomic force microscopy platform. We demonstrate the added advantages of G-Mode KPFM by allowing simultaneous mapping of CPD and capacitance gradient (C') channels as well as increased flexibility in data exploration across frequency, time, space, and noise domains. G-Mode KPFM is particularly suitable for characterizing voltage sensitive materials or for operation in conductive electrolytes, and will be useful for probing electrodynamics in photovoltaics, liquids and ionic conductors.

12.
Nanotechnology ; 27(12): 125302, 2016 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-26890062

RESUMO

Achieving the ultimate limits of lithographic resolution and material performance necessitates engineering of matter with atomic, molecular, and mesoscale fidelity. With the advent of scanning helium ion microscopy, maskless He(+) and Ne(+) beam lithography of 2D materials, such as graphene-based nanoelectronics, is coming to the forefront as a tool for fabrication and surface manipulation. However, the effects of using a Ne focused-ion-beam on the fidelity of structures created out of 2D materials have yet to be explored. Here, we will discuss the use of energetic Ne ions in engineering graphene nanostructures and explore their mechanical, electromechanical and chemical properties using scanning probe microscopy (SPM). By using SPM-based techniques such as band excitation (BE) force modulation microscopy, Kelvin probe force microscopy (KPFM) and Raman spectroscopy, we are able to ascertain changes in the mechanical, electrical and optical properties of Ne(+) beam milled graphene nanostructures and surrounding regions. Additionally, we are able to link localized defects around the milled graphene to ion milling parameters such as dwell time and number of beam passes in order to characterize the induced changes in mechanical and electromechanical properties of the graphene surface.

13.
Nano Lett ; 15(4): 2343-9, 2015 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-25789878

RESUMO

Yttrium-doped barium zirconate (BZY) thin films recently showed surprising electric transport properties. Experimental investigations conducted mainly by electrochemical impedance spectroscopy suggested that a consistent part of this BZY conductivity is of protonic nature. These results have stimulated further investigations by local unconventional techniques. Here, we use electrochemical strain microscopy (ESM) to detect electrochemical activity in BZY films with nanoscale resolution. ESM in a novel cross-sectional measuring setup allows the direct visualization of the interfacial activity. The local electrochemical investigation is compared with the structural studies performed by state of art scanning transmission electron microscopy (STEM). The ESM and STEM results show a clear correlation between the conductivity and the interface structural defects. We propose a physical model based on a misfit dislocation network that introduces a novel 2D transport phenomenon, whose fingerprint is the low activation energy measured.

15.
Micromachines (Basel) ; 14(10)2023 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-37893321

RESUMO

Ion implantation is a key capability for the semiconductor industry. As devices shrink, novel materials enter the manufacturing line, and quantum technologies transition to being more mainstream. Traditional implantation methods fall short in terms of energy, ion species, and positional precision. Here, we demonstrate 1 keV focused ion beam Au implantation into Si and validate the results via atom probe tomography. We show the Au implant depth at 1 keV is 0.8 nm and that identical results for low-energy ion implants can be achieved by either lowering the column voltage or decelerating ions using bias while maintaining a sub-micron beam focus. We compare our experimental results to static calculations using SRIM and dynamic calculations using binary collision approximation codes TRIDYN and IMSIL. A large discrepancy between the static and dynamic simulation is found, which is due to lattice enrichment with high-stopping-power Au and surface sputtering. Additionally, we demonstrate how model details are particularly important to the simulation of these low-energy heavy-ion implantations. Finally, we discuss how our results pave a way towards much lower implantation energies while maintaining high spatial resolution.

16.
Science ; 376(6594): 731-738, 2022 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-35549417

RESUMO

Continuous advancement in nonvolatile and morphotropic beyond-Moore electronic devices requires integration of ferroelectric and semiconductor materials. The emergence of hafnium oxide (HfO2)-based ferroelectrics that are compatible with atomic-layer deposition has opened interesting and promising avenues of research. However, the origins of ferroelectricity and pathways to controlling it in HfO2 are still mysterious. We demonstrate that local helium (He) implantation can activate ferroelectricity in these materials. The possible competing mechanisms, including He ion-induced molar volume changes, vacancy redistribution, vacancy generation, and activation of vacancy mobility, are analyzed. These findings both reveal the origins of ferroelectricity in this system and open pathways for nanoengineered binary ferroelectrics.

17.
Micromachines (Basel) ; 11(5)2020 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-32455865

RESUMO

The next generation optical, electronic, biological, and sensing devices as well as platforms will inevitably extend their architecture into the 3rd dimension to enhance functionality. In focused ion beam induced deposition (FIBID), a helium gas field ion source can be used with an organometallic precursor gas to fabricate nanoscale structures in 3D with high-precision and smaller critical dimensions than focused electron beam induced deposition (FEBID), traditional liquid metal source FIBID, or other additive manufacturing technology. In this work, we report the effect of beam current, dwell time, and pixel pitch on the resultant segment and angle growth for nanoscale 3D mesh objects. We note subtle beam heating effects, which impact the segment angle and the feature size. Additionally, we investigate the competition of material deposition and sputtering during the 3D FIBID process, with helium ion microscopy experiments and Monte Carlo simulations. Our results show complex 3D mesh structures measuring ~300 nm in the largest dimension, with individual features as small as 16 nm at full width half maximum (FWHM). These assemblies can be completed in minutes, with the underlying fabrication technology compatible with existing lithographic techniques, suggesting a higher-throughput pathway to integrating FIBID with established nanofabrication techniques.

18.
Nanomaterials (Basel) ; 9(10)2019 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-31574915

RESUMO

A helium gas field ion source has been demonstrated to be capable of realizing higher milling resolution relative to liquid gallium ion sources. One drawback, however, is that the helium ion mass is prohibitively low for reasonable sputtering rates of bulk materials, requiring a dosage that may lead to significant subsurface damage. Manipulation of suspended graphene is, therefore, a logical application for He+ milling. We demonstrate that competitive ion beam-induced deposition from residual carbonaceous contamination can be thermally mitigated via a pulsed laser-assisted He+ milling. By optimizing pulsed laser power density, frequency, and pulse width, we reduce the carbonaceous byproducts and mill graphene gaps down to sub 10 nm in highly complex kiragami patterns.

19.
J Vis Exp ; (145)2019 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-30907866

RESUMO

The ability to recreate synaptic functionalities in synthetic circuit elements is essential for neuromorphic computing systems that seek to emulate the cognitive powers of the brain with comparable efficiency and density. To date, silicon-based three-terminal transistors and two-terminal memristors have been widely used in neuromorphic circuits, in large part due to their ability to co-locate information processing and memory. Yet these devices cannot achieve the interconnectivity and complexity of the brain because they are power-hungry, fail to mimic key synaptic functionalities, and suffer from high noise and high switching voltages. To overcome these limitations, we have developed and characterized a biomolecular memristor that mimics the composition, structure, and switching characteristics of biological synapses. Here, we describe the process of assembling and characterizing biomolecular memristors consisting of a 5 nm-thick lipid bilayer formed between lipid-functionalized water droplets in oil and doped with voltage-activated alamethicin peptides. While similar assembly protocols have been used to investigate biophysical properties of droplet-supported lipid membranes and membrane-bound ion channels, this article focuses on key modifications of the droplet interface bilayer method essential for achieving consistent memristor performance. Specifically, we describe the liposome preparation process and the incorporation of alamethicin peptides in lipid bilayer membranes, and the appropriate concentrations of each constituent as well as their impact on the overall response of the memristors. We also detail the characterization process of biomolecular memristors, including measurement and analysis of memristive current-voltage relationships obtained via cyclic voltammetry, as well as short-term plasticity and learning in response to step-wise voltage pulse trains.


Assuntos
Bicamadas Lipídicas , Sinapses/fisiologia , Alameticina , Biomimética , Canais Iônicos , Lipossomos
20.
Nanoscale ; 10(37): 18001-18009, 2018 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-30226257

RESUMO

Bottlebrush polymers are important for a variety of applications ranging from drug delivery to electronics. The functional flexibility of the branched sidechains has unique assembly properties when compared to linear block polymer systems. However, reports of direct observation of molecular reorganization have been sparse. This information is necessary to enhance the understanding of the structure-property relationships in these systems and yield a rational design approach for novel polymeric materials. In this work, we report direct visualization of bottlebrush molecular organization and the formation of nematic-type ordering in an amorphous polymer bottlebrush system, captured with plasma etching and helium ion microscopy. By observing the unperturbed structure of this material at high resolution and quantifying image features, we were able to qualitatively link experimental results with structures predicted by coarse-grained molecular dynamics simulations. The direct visualization and computation workflow developed in this work can be applied to a broad variety of polymers with different architectures, linking imaging results with other, independent channels of information for better understanding and control of these classes of materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA