Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Med Teach ; 43(11): 1294-1301, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34224286

RESUMO

PURPOSE: Ward rounds play a crucial role in the delivery of patient care in inpatient settings, but involve a complex mix of tasks, skills and challenges for junior doctors to negotiate. This study informs the development of high-quality training by identifying the activities that junior doctors perform, and those associated with stress during real-life ward rounds. MATERIALS AND METHODS: All activities performed by FY1 doctors (n = 60) over 2 ward rounds were coded in real-time by a trained observer using the work observation method by activity timing (WOMBAT). Doctors' heart rate was continuously recorded and non-metabolic peaks in heart rate used as a physiological indicator of stress. RESULTS: During ward rounds, FY1 doctors commonly engaged in indirect patient care, professional communication, documentation and observation. Very little time was spent on direct patient care (6%) or explicit supervision/education (0.01%). Heart rate data indicated that stress was highest during administrative tasks while interacting directly with patients while stepping out of rounds to complete personal tasks, when answering bleeps and while multi-tasking. CONCLUSIONS: Training that specifically covers the activities involved, skills required, and challenges inherent in real-life ward rounds may better prepare FY doctors for this complex area of practice.


Assuntos
Médicos , Visitas de Preceptoria , Documentação , Hospitais , Humanos , Corpo Clínico Hospitalar
2.
Int J Mol Sci ; 20(1)2018 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-30583492

RESUMO

It is becoming clear that in addition to gap junctions playing a role in cell⁻cell communication, gap junction proteins (connexins) located in cytoplasmic compartments may have other important functions. Mitochondrial connexin 43 (Cx43) is increased after ischemic preconditioning and has been suggested to play a protective role in the heart. How Cx43 traffics to the mitochondria and the interactions of mitochondria with other Cx43-containing structures are unclear. In this study, immunocytochemical, super-resolution, and transmission electron microscopy were used to detect cytoplasmic Cx43-containing structures and to demonstrate their interactions with other cytoplasmic organelles. The most prominent cytoplasmic Cx43-containing structures-annular gap junctions-were demonstrated to form intimate associations with lysosomes as well as with mitochondria. Surprisingly, the frequency of associations between mitochondria and annular gap junctions was greater than that between lysosomes and annular gap junctions. The benefits of annular gap junction/mitochondrial associations are not known. However, it is tempting to suggest, among other possibilities, that the contact between annular gap junction vesicles and mitochondria facilitates Cx43 delivery to the mitochondria. Furthermore, it points to the need for investigating annular gap junctions as more than only vesicles destined for degradation.


Assuntos
Vesículas Citoplasmáticas/metabolismo , Junções Comunicantes/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Mitocôndrias/metabolismo , Imagem Óptica , Comunicação Celular , Linhagem Celular Tumoral , Conexina 43/química , Conexina 43/genética , Conexina 43/metabolismo , Vesículas Citoplasmáticas/química , Junções Comunicantes/química , Proteínas de Fluorescência Verde/química , Proteínas de Fluorescência Verde/genética , Humanos , Imuno-Histoquímica , Citometria de Varredura a Laser , Lisossomos/química , Lisossomos/metabolismo , Mitocôndrias/química
3.
BMC Cell Biol ; 17 Suppl 1: 22, 2016 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-27230503

RESUMO

Internalization of gap junction plaques results in the formation of annular gap junction vesicles. The factors that regulate the coordinated internalization of the gap junction plaques to form annular gap junction vesicles, and the subsequent events involved in annular gap junction processing have only relatively recently been investigated in detail. However it is becoming clear that while annular gap junction vesicles have been demonstrated to be degraded by autophagosomal and endo-lysosomal pathways, they undergo a number of additional processing events. Here, we characterize the morphology of the annular gap junction vesicle and review the current knowledge of the processes involved in their formation, fission, fusion, and degradation. In addition, we address the possibility for connexin protein recycling back to the plasma membrane to contribute to gap junction formation and intercellular communication. Information on gap junction plaque removal from the plasma membrane and the subsequent processing of annular gap junction vesicles is critical to our understanding of cell-cell communication as it relates to events regulating development, cell homeostasis, unstable proliferation of cancer cells, wound healing, changes in the ischemic heart, and many other physiological and pathological cellular phenomena.


Assuntos
Vesículas Citoplasmáticas/metabolismo , Junções Comunicantes/metabolismo , Animais , Transporte Biológico , Técnica de Fratura por Congelamento , Junções Comunicantes/ultraestrutura , Humanos , Modelos Biológicos , Pontos Quânticos
4.
Cell Biol Int ; 40(4): 387-96, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26724787

RESUMO

Gap junction channels, once clustered into gap junction plaques, allow communication of essential metabolites between cells. Gap junction plaques have been reported to be lost from the cell surface during cell division. The mechanism involved in this loss of gap junction plaques during mitosis is unclear, but we hypothesize that an endoexocytotic mechanism that results in cytoplasmic double-membraned annular gap junction vesicles is involved. In this study, gap junction plaque changes in dividing cells were examined in SW-13 adrenocortical tumor cells. Endogenous gap junction protein, connexin 43 (Cx43), was detected with immunofluorescence, and live cell imaging was used to monitor green fluorescent protein-tagged Cx43 (Cx43-GFP). Mitotic stages were identified by Hoechst chromosomal staining. During interphase, large gap junction plaques were detected; however, the presence of these plaques decreased, whereas cytoplasmic puncta increased beginning with prophase. The cytoplasmic puncta were demonstrated with immunoelectron microscopy to be Cx43- positive annular gap junction vesicles. As gap junction plaques reformed at cleavage furrows between daughter cells, the number of annular gap junctions decreased during cytokinesis. The data are consistent with the mechanism of gap junction plaque loss during mitosis relying on an endoexocytotic process that results in annular gap junction vesicles formation. The rapid formation of gap junction plaques during cytokinesis points to the intriguing possibility of connexin recycling from annular gap junction vesicles to form gap junction plaques as mitosis is completed.


Assuntos
Conexina 43/metabolismo , Mitose , Linhagem Celular Tumoral , Cromatina/metabolismo , Conexina 43/genética , Citocinese/fisiologia , Junções Comunicantes/metabolismo , Junções Comunicantes/ultraestrutura , Humanos , Interfase , Microscopia Eletrônica de Transmissão , Microscopia Imunoeletrônica
5.
Artigo em Inglês | MEDLINE | ID: mdl-27445985

RESUMO

Adrenal cortical steroidogenesis and proliferation are thought to be modulated by gap junction-mediated direct cell-cell communication of regulatory molecules between cells. Such communication is regulated by the number of gap junction channels between contacting cells, the rate at which information flows between these channels, and the rate of channel turnover. Knowledge of the factors regulating gap junction-mediated communication and the turnover process are critical to an understanding of adrenal cortical cell functions, including development, hormonal response to adrenocorticotropin, and neoplastic dedifferentiation. Here, we review what is known about gap junctions in the adrenal gland, with particular attention to their role in adrenocortical cell steroidogenesis and proliferation. Information and insight gained from electrophysiological, molecular biological, and imaging (immunocytochemical, freeze fracture, transmission electron microscopic, and live cell) techniques will be provided.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA