RESUMO
Field experiments in a contaminated farmland in Nihonmatsu city, Fukushima were conducted to assess the effectiveness of the plant-microbe interaction on removal of radiocesium. Before plowing, 93.3% of radiocesium was found in the top 5 cm layer (5,718 Bq kg DW(-1)). After plowing, Cs radioactivity in the 0-15 cm layer ranged from 2,037 to 3,277 Bq kg DW(-1). Based on sequential extraction, the percentage of available radiocesium (water soluble + exchangeable) was fewer than 10% of the total radioactive Cs. The transfer of (137)Cs was investigated in three agricultural crops; komatsuna (four cultivars), Indian mustard and buckwheat, inoculated with a Bacillus or an Azospirillum strains. Except for komatsuna Nikko and Indian mustard, inoculation with both strains resulted in an increase of biomass production by the tested plants. The highest (137)Cs radioactivity concentration in above-ground parts was found in Bacillus-inoculated komatsuna Nikko (121 Bq kg DW(-1)), accompanied with the highest (137)Cs TF (0.092). Furthermore, komatsuna Nikko-Bacillus and Indian mustard-Azospirillum associations gave the highest (137)Cs removal, 131.5 and 113.8 Bq m(-2), respectively. Despite the beneficial effect of inoculation, concentrations of (137)Cs and its transfer to the tested plants were not very high; consequently, removal of (137)Cs from soil would be very slow.
Assuntos
Azospirillum/fisiologia , Bacillus/fisiologia , Radioisótopos de Césio/análise , Acidente Nuclear de Fukushima , Plantas/microbiologia , Monitoramento de Radiação , Poluentes Radioativos do Solo/análise , Agricultura , Biomassa , Geografia , Japão , Solo/químicaRESUMO
The spatial variability of carbon dioxide (CO(2)), methane (CH(4)), and nitrous oxide (N(2)O) fluxes from forest soil with high nitrogen (N) deposition was investigated at a rolling hill region in Japan. Gas fluxes were measured on July 25th and December 5th, 2008 at 100 points within a 100 × 100 m grid. Slope direction and position influenced soil characteristics and site-specific emissions were found. The CO(2) flux showed no topological difference in July, but was significantly lower in December for north-slope with coniferous trees. Spatial dependency of CH(4) fluxes was stronger than that of CO(2) or N(2)O and showed a significantly higher uptake in hill top, and emissions in the valley indicating strong influence of water status. N(2)O fluxes showed no spatial dependency and exhibited high hot spots at different topology in July and December. The high N deposition led to high N(2)O fluxes and emphasized the spatial variability.
Assuntos
Poluentes Atmosféricos/análise , Dióxido de Carbono/análise , Monitoramento Ambiental , Metano/análise , Óxido Nitroso/análise , Cidades , Florestas , Geografia , Japão , SoloRESUMO
The effects of inoculation with Bacillus and Azospirillum strains on growth and cesium accumulation of five plant species, Komatsuna, Amaranth, sorghum, common millet and buckwheat, grown on cesium-spiked soil were assessed for potential use in cesium remediation. Pot experiments were performed using "artificially" Cs-contaminated soil. Three treatments were applied based on Cs location in the soil. For a soil height of 15 cm in the pots, Cs was added as follows: in the top five cm to imitate no ploughing condition; in the bottom five cm simulating inverted ploughing; and uniformly distributed Cs reproducing normal plowing. Generally, inoculation of Cs-exposed plants significantly enhanced growth and tolerance to this element. Transfer factor (ratio of Cs concentration in the plant tissues to that in surrounding soil) was strongly influenced by Cs distribution, with higher values in the top-Cs treatment. Within this treatment, inoculation of Komatsuna with Bacillus and Azospirillum strains resulted in the greatest transfer factors of 6.55 and 6.68, respectively. Cesium content in the shoots was high in the Azospirillum-inoculated Komatsuna, Amaranth, and buckwheat, i.e., 1,830, 1,220, and 1,030 µg per pot, respectively (five plants were grown in each pot). Therefore, inoculation of Komatsuna and Amaranth with the strains tested here could be effective in enhancing Cs accumulation. The decrease of Cs transfer under uniform- and bottom-Cs treatments would suggest that countermeasures aiming at decreasing the transfer of Cs could rely on ploughing practices.
Assuntos
Azospirillum/fisiologia , Bacillus/fisiologia , Césio/metabolismo , Plantas/metabolismo , Plantas/microbiologia , Poluentes do Solo/metabolismo , Bacillus/classificação , Biodegradação Ambiental , Acidente Nuclear de FukushimaRESUMO
Finding consensus in definitions of commonly-used terms and concepts is a key requirement to enable cooperations between interdisciplinary scientists and practitioners in inter- or transdisciplinary projects. In research on sustainable agriculture, the term 'landscape' is emphasised in particular, being used in studies that range from biogeochemical to socio-economic topics. However, it is normally used in a rather unspecific manner. Moreover, different disciplines assign deviating meanings to this term, which impedes interdisciplinary understanding and synthesis. To close this gap, a systematic literature review from relevant disciplines was conducted to identify a common understanding of the term "landscape". Three general categories of landscape conceptualizations were identified. In a small subset of studies, "landscape" is defined by area size or by natural or anthropogenic borders. The majority of reviewed papers, though, define landscapes as sets of relationships between various elements. Selection of respective elements differed widely depending on research objects. Based on these findings, a new definition of landscape is proposed, which can be operationalized by interdisciplinary researchers to define a common study object and which allows for sufficient flexibility depending on specific research questions. It also avoids over-emphasis on specific spatio-temporal relations at the "landscape scale", which may be context-dependent. Agricultural landscape research demands for study-specific definitions which should be meticulously provided in the future.
RESUMO
Transformation of agriculture to realise sustainable site-specific management requires comprehensive scientific support based on field experiments to capture the complex agroecological process, incite new policies and integrate them into farmers' decisions. However, current experimental approaches are limited in addressing the wide spectrum of sustainable agroecosystem and landscape characteristics and in supplying stakeholders with suitable solutions and measures. This review identifies major constraints in current field experimentation, such as a lack of consideration of multiple processes and scales and a limited ability to address interactions between them. It emphasizes the urgent need to establish a new category of landscape experimentation that empowers agricultural research on sustainable agricultural systems, aiming at elucidating interactions among various landscape structures and functions, encompassing both natural and anthropogenic features. It extensively discusses the key characteristics of landscape experiments and major opportunities to include them in the agricultural research agenda. In particular, simultaneously considering multiple factors, and thus processes at different scales and possible synergies or antagonisms among them would boost our understanding of heterogeneous agricultural landscapes. We also highlight that though various studies identified promising approaches with respect to experimental design and data analysis, further developments are still required to build a fully functional and integrated framework for landscape experimentation in agricultural settings.
RESUMO
Multifunctional and diversified agriculture can address diverging pressures and demands by simultaneously enhancing productivity, biodiversity, and the provision of ecosystem services. The use of digital technologies can support this by designing and managing resource-efficient and context-specific agricultural systems. We present the Digital Agricultural Knowledge and Information System (DAKIS) to demonstrate an approach that employs digital technologies to enable decision-making towards diversified and sustainable agriculture. To develop the DAKIS, we specified, together with stakeholders, requirements for a knowledge-based decision-support tool and reviewed the literature to identify limitations in the current generation of tools. The results of the review point towards recurring challenges regarding the consideration of ecosystem services and biodiversity, the capacity to foster communication and cooperation between farmers and other actors, and the ability to link multiple spatiotemporal scales and sustainability levels. To overcome these challenges, the DAKIS provides a digital platform to support farmers' decision-making on land use and management via an integrative spatiotemporally explicit approach that analyses a wide range of data from various sources. The approach integrates remote and in situ sensors, artificial intelligence, modelling, stakeholder-stated demand for biodiversity and ecosystem services, and participatory sustainability impact assessment to address the diverse drivers affecting agricultural land use and management design, including natural and agronomic factors, economic and policy considerations, and socio-cultural preferences and settings. Ultimately, the DAKIS embeds the consideration of ecosystem services, biodiversity, and sustainability into farmers' decision-making and enables learning and progress towards site-adapted small-scale multifunctional and diversified agriculture while simultaneously supporting farmers' objectives and societal demands.
RESUMO
While agricultural intensification and expansion are major factors driving loss and degradation of natural habitat and species decline, some wildlife species also benefit from agriculturally managed habitats. This may lead to high population densities with impacts on both human livelihoods and wildlife conservation. Cranes are a group of 15 species worldwide, affected both negatively and positively by agricultural practices. While eleven species face critical population declines, numbers of common cranes (Grus grus) and sandhill cranes (Grus canadensis) have increased drastically in the last 40 years. Their increase is associated with higher incidences of crane foraging on agricultural crops, causing financial losses to farmers. Our aim was to synthesize scientific knowledge on the bilateral effects of land use change and crane populations. We conducted a systematic literature review of peer-reviewed publications on agriculture-crane interactions (n = 135) and on the importance of agricultural crops in the diet of cranes (n = 81). Agricultural crops constitute a considerable part of the diet of all crane species (average of 37%, most frequently maize (Zea mays L.) and wheat (Triticum aestivum L.)). Crop damage was identified in only 10% of all agriculture-crane interactions, although one-third of interactions included cranes foraging on cropland. Using a conceptual framework analysis, we identified two major pathways in agriculture-crane interactions: (1) habitat loss with negative effects on crane species dependent on specific habitats, and (2) expanding agricultural habitats with superabundant food availability beneficial for opportunistic crane species. The degree to which crane species can adapt to agricultural land use changes may be an important factor explaining their population response. We conclude that multi-objective management needs to combine land sparing and land sharing strategies at landscape scale. To support viable crane populations while guaranteeing sustainable agricultural production, it is necessary to include the perspectives of diverse stakeholders and streamline conservation initiatives and agricultural policy accordingly.
RESUMO
Numerous reports confirm the positive effect of biochar application on soil properties and plant development. However, the interaction between root-associated beneficial microbes and different types of biochar is not well understood. The objective of this study was to evaluate the plant growth of lettuce after the application of three types of biochar in loamy, sandy soil individually and in combination with plant-beneficial microbes. Furthermore, total microbial activity in rhizosphere soil of lettuce was measured by means of fluorescein diacetate (FDA) hydrolase and enzyme activities linked to carbon, nitrogen, and phosphorus cycling. We used three types of biochar: (i) pyrolysis char from cherry wood (CWBC), (ii) pyrolysis char from wood (WBC), and (iii) pyrolysis char from maize (MBC) at 2% concentration. Our results showed that pyrolysis biochars positively affected plant interaction with microbial inoculants. Plant dry biomass grown on soil amended with MBC in combination with Klebsiella sp. BS13 and Klebsiella sp. BS13 + Talaromyces purpureogenus BS16aPP inoculants was significantly increased by 5.8% and 18%, respectively, compared to the control plants. Comprehensively, interaction analysis showed that the biochar effect on soil enzyme activities involved in N and P cycling depends on the type of microbial inoculant. Microbial strains exhibited plant growth-promoting traits, including the production of indole 3-acetic-acid and hydrogen cyanide and phosphate-solubilizing ability. The effect of microbial inoculant also depends on the biochar type. In summary, these findings provide new insights into the understanding of the interactions between biochar and microbial inoculants, which may affect lettuce growth and development.
RESUMO
Endophytes colonizing plant tissue play an essential role in plant growth, development, stress tolerance and plant protection from soil-borne diseases. In this study, we report the diversity of cultivable endophytic bacteria associated with marigold (Calendula officinalis L.) by using 16S rRNA gene analysis and their plant beneficial properties. A total of 42 bacterial isolates were obtained from plant tissues of marigold. They belonged to the genera Pantoea, Enterobacter, Pseudomonas, Achromobacter, Xanthomonas, Rathayibacter, Agrobacterium, Pseudoxanthomonas, and Beijerinckia. Among the bacterial strains, P. kilonensis FRT12, and P. rhizosphaerae FST5 showed moderate or vigorous inhibition against three tested plant pathogenic fungi, F. culmorum, F. solani and R. solani. They also demonstrated the capability to produce hydrolytic enzymes and indole-3-acetic acid (IAA). Five out of 16 isolates significantly stimulated shoot and root growth of marigold in a pot experiment. The present study reveals that more than half of the bacterial isolates associated with marigold (C. officinalis L.) provided antifungal activity against one or more plant pathogenic fungi. Our findings suggest that medicinal plants with antimicrobial activity could be a source for selecting microbes with antagonistic activity against fungal plant pathogens or with plant growth stimulating potential. These isolates might be considered as promising candidates for the improvement of plant health.
RESUMO
The diversity of salt-tolerant cultivable endophytic bacteria associated with the halophyte New Zealand spinach (Tetragonia tetragonioides (Pall.) Kuntze) was studied, and their plant beneficial properties were evaluated. The bacteria isolated from leaves and roots belonged to Agrobacterium, Stenotrophomonas, Bacillus, Brevibacterium, Pseudomonas, Streptomyces, Pseudarthrobacter, Raoultella, Curtobacterium, and Pantoea. Isolates exhibited plant growth-promoting traits, including the production of a phytohormone (indole 3-acetic-acid), cell wall degrading enzymes, and hydrogen cyanide production. Furthermore, antifungal activity against the plant pathogenic fungi Fusarium solani, F. oxysporum, and Verticillium dahliae was detected. Ten out of twenty bacterial isolates were able to synthesize ACC deaminase, which plays a vital role in decreasing ethylene levels in plants. Regardless of the origin of isolated bacteria, root or leaf tissue, they stimulated plant root and shoot growth under 200 mM NaCl conditions. Our study suggests that halophytes such as New Zealand spinach are a promising source for isolating halotolerant plant-beneficial bacteria, which can be considered as potentially efficient biofertilizers in the bioremediation of salt-affected soils.
RESUMO
Licorice (Glycyrrhiza uralensis Fisch.) is a salt and drought tolerant legume suitable for rehabilitating abandoned saline lands, especially in dry arid regions. We hypothesized that soil amended with maize-derived biochar might alleviate salt stress in licorice by improving its growth, nutrient acquisition, and root system adaptation. Experiments were designed to determine the effect of different biochar concentrations on licorice growth parameters, acquisition of C (carbon), nitrogen (N), and phosphorus (P) and on soil enzyme activities under saline and non-saline soil conditions. Pyrolysis char from maize (600 °C) was used at concentrations of 2% (B2), 4% (B4), and 6% (B6) for pot experiments. After 40 days, biochar improved the shoot and root biomass of licorice by 80 and 41% under saline soil conditions. However, B4 and B6 did not have a significant effect on shoot growth. Furthermore, increased nodule numbers of licorice grown at B4 amendment were observed under both non-saline and saline conditions. The root architectural traits, such as root length, surface area, project area, root volume, and nodulation traits, also significantly increased by biochar application at both B2 and B4. The concentrations of N and K in plant tissue increased under B2 and B4 amendments compared to the plants grown without biochar application. Moreover, the soil under saline conditions amended with biochar showed a positive effect on the activities of soil fluorescein diacetate hydrolase, proteases, and acid phosphomonoesterases. Overall, this study demonstrated the beneficial effects of maize-derived biochar on growth and nutrient uptake of licorice under saline soil conditions by improving nodule formation and root architecture, as well as soil enzyme activity.
RESUMO
Hydrochar is rich in nutrients and may provide a favorable habitat or shelter for bacterial proliferation and survival. Therefore, in this study, we investigate the efficiency of a hydrochar-based rhizobial inoculant (Bradyrhizobium japonicum) on the symbiotic performance of soybean under both greenhouse and field conditions. There were positive and significant effects of hydrochar-based inoculation on the root and shoot growth of soybean as compared to uninoculated plants grown under irrigated and drought conditions. The drought stress significantly inhibited the symbiotic performance of rhizobia with soybean. Soybean inoculated with hydrochar-based B. japonicum produced twofold more nodules under drought stress conditions as compared to plants inoculated with a commercial preparation/inoculant carrier B. japonicum (HISTICK). The N concentration of inoculated plants with hydrochar-based B. japonicum was by 31% higher than that of un-inoculated plants grown in pots and by 22% for HISTICK. Furthermore, the soybean treated with hydrochar-based B. japonicum showed higher grain yield of 29% under irrigated conditions and 40% higher under rainfed condition compared to un-inoculated plants. In conclusion, the obtained results proved the potential of hydrochar-based B. japonicum inoculant for soybean in terms of increased symbiotic performance and agronomic traits, especially under rainfed conditions.
RESUMO
The effects of biochar on plant growth vary depending on the applied biochar type, study site environmental conditions, microbial species, and plant-microbial interactions. The objectives of the present study were therefore to assess 1) the response of growth parameters of lupin and root disease incidence to the application of three biochar types in a loamy sandy soil, and 2) the role of endophytic bacteria in biological control of root rot disease incidence in lupin after the amendment of soil with different biochar types. As biochar types we tested (i) hydrochar (HTC) from maize silage, (ii) pyrolysis char from maize (MBC), and (iii) pyrolysis char from wood (WBC) at three different concentrations (1%, 2%, and 3% of char as soil amendments). There were no significant effects in lupin shoot and root growth in soils amended with WBC at any of the concentrations. MBC did not affect plant growth except for root dry weight at 2% MBC. HTC char at 2% concentration, significantly increased the root dry weight of lupin by 54-75%, and shoot dry weight by 21-25%. Lupin plants grown in soil amended with 2% and 3% WBC and MBC chars showed 40-50% and 10-20% disease symptoms, respectively. Plants grown in soil without biochar and with HTC char were healthy, and no disease incidence occurred. Pseudomonas putida L2 and Stenotrophomonas pavanii L8 isolates demonstrated a disease reduction compared to un-inoculated plants under MBC and WBC amended soil that was infested with Fusarium solani.
RESUMO
In central Europe, soybean cultivation is gaining increasing importance to reduce protein imports from overseas and make cropping systems more sustainable. In the field, despite the inoculation of soybean with commercial rhizobia, its nodulation is low. In many parts of Europe, limited information is currently available on the genetic diversity of rhizobia and, thus, biological resources for selecting high nitrogen-fixing rhizobia are inadequate. These resources are urgently needed to improve soybean production in central Europe. The objective of the present study was to identify strains that have the potential to increase nitrogen fixation by and the yield of soybean in German soils. We isolated and characterized 77 soybean rhizobia from 18 different sampling sites. Based on a multilocus sequence analysis (MLSA), 71% of isolates were identified as Bradyrhizobium and 29% as Rhizobium. A comparative analysis of the nodD and nifH genes showed no significant differences, which indicated that the soybean rhizobia symbiotic genes in the present study belong to only one type. One isolate, GMF14 which was tolerant of a low temperature (4°C), exhibited higher nitrogen fixation in root nodules and a greater plant biomass than USDA 110 under cold conditions. These results strongly suggest that some indigenous rhizobia enhance biological nitrogen fixation and soybean yield due to their adaption to local conditions.
Assuntos
Bradyrhizobium/fisiologia , Glycine max/crescimento & desenvolvimento , Glycine max/microbiologia , Rhizobium/fisiologia , Microbiologia do Solo , Agricultura , Proteínas de Bactérias/genética , Bradyrhizobium/classificação , Bradyrhizobium/genética , Bradyrhizobium/metabolismo , Temperatura Baixa , Alemanha , Tipagem de Sequências Multilocus , Fixação de Nitrogênio/genética , Oxirredutases/genética , Filogenia , Rhizobium/classificação , Rhizobium/genética , Rhizobium/metabolismo , Nódulos Radiculares de Plantas/microbiologia , Estresse Fisiológico , Simbiose/genéticaRESUMO
Soil salinity has emerged as a serious issue for global food security. It is estimated that currently about 62 million hectares or 20 percent of the world's irrigated land is affected by salinity. The deposition of an excess amount of soluble salt in cultivable land directly affects crop yields. The uptake of high amount of salt inhibits diverse physiological and metabolic processes of plants even impacting their survival. The conventional methods of reclamation of saline soil which involve scraping, flushing, leaching or adding an amendment (e.g., gypsum, CaCl2, etc.) are of limited success and also adversely affect the agro-ecosystems. In this context, developing sustainable methods which increase the productivity of saline soil without harming the environment are necessary. Since long, breeding of salt-tolerant plants and development of salt-resistant crop varieties have also been tried, but these and aforesaid conventional approaches are not able to solve the problem. Salt tolerance and dependence are the characteristics of some microbes. Salt-tolerant microbes can survive in osmotic and ionic stress. Various genera of salt-tolerant plant growth promoting rhizobacteria (ST-PGPR) have been isolated from extreme alkaline, saline, and sodic soils. Many of them are also known to mitigate various biotic and abiotic stresses in plants. In the last few years, potential PGPR enhancing the productivity of plants facing salt-stress have been researched upon suggesting that ST-PGPR can be exploited for the reclamation of saline agro-ecosystems. In this review, ST-PGPR and their potential in enhancing the productivity of saline agro-ecosystems will be discussed. Apart from this, PGPR mediated mechanisms of salt tolerance in different crop plants and future research trends of using ST-PGPR for reclamation of saline soils will also be highlighted.
RESUMO
Chickpea (Cicer arietinum L.) is an important legume originating in the Mediterranean and the Middle East and is now cultivated in several varieties throughout the world due to its high protein and fiber content as well as its potential health benefits. However, production is drastically affected by prevalent water stress in most soybean-growing regions. This study investigates the potential of biochar to affect chickpea-Rhizobium symbiotic performance and soil biological activity in a pot experiment. Two different biochar types were produced from maize using different pyrolysis techniques, i.e., by heating at 600°C (MBC) and by batch-wise hydrothermal carbonization at 210°C (HTC), and used as soil amendments. The plant biomass, plant nutrient concentration, nodule numbers, leghemoglobin (Lb) content, soil enzyme activities, and nutrient contents of the grown chickpeas were examined. Our results indicated that plant root and shoot biomass, the acquisition of N, P, K, and Mg, soil nutrient contents, soil alkaline and acid phosphomonoesterases, and proteases were significantly increased by HTC char application in comparison to MBC char under both well-watered and drought conditions. Furthermore, the application of both biochar types caused an increase in nodule number by 52% in well-watered and drought conditions by improving the symbiotic performance of chickpea with Mesorhizobium ciceri. Rhizobial inoculation combined with HTC char showed a positive effect on soil FDA activity, proteases and alkaline phosphomonoesterases under well-watered and drought conditions compared to the control or MBC char-amended soils. This concept, whereby the type of producing biochar plays a central role in the effect of the biochar, conforms to the fact that there is a link between biochar chemical and physical properties and enhanced plant nutrient acquisition, symbiotic performance and stress tolerance.
RESUMO
A pot experiment was conducted to study the effects of soil types and osmotic levels on growth and 137Cs accumulation in two blackgram varieties differing in salinity tolerance grown in Fukushima contaminated soils. The contamination levels of the sandy clay loam and clay soil were 1084 and 2046 Bq kg-1 DW, respectively. The 137Cs activity was higher in both plants grown on the sandy clay loam than on the clay soil regardless of soil 137Cs activity concentration. No significant differences were observed in all measured growth parameters between the two varieties under optimal water conditions for both types of soil. However, the growth, leaf water contents and 137Cs activity concentrations in both plants were lower in both soil types when there was water stress induced by addition of polyethylene glycol. Water stress-induced reduction in total leaf area and total biomass, in addition to leaf relative water content, were higher in salt sensitive 'Mut Pe Khaing To' than in salt tolerant 'U-Taung-2' plants for both soil types. Varietal difference in decreased 137Cs uptake under water stress was statically significant in the sandy clay loam soil, however, it was not in the clay soil. The transfer of 137Cs from soil to plants (i.e., root, stem and leaf) was higher for the sandy clay loam for both plants when compared with those of the clay soil. The decreased activity of 137Cs in the above ground samples (leaf and stem) in both plants in response to osmotic stress suggested that plant available 137Cs decreased when soil water is limited by osmotic stress.
Assuntos
Radioisótopos de Césio/metabolismo , Pressão Osmótica , Poluentes Radioativos do Solo/metabolismo , Solo/química , Radioisótopos de Césio/análise , Poluentes Radioativos do Solo/análise , VignaRESUMO
Fifty six local Japanese cultivars of Brassica rapa (40 cultivars), Brassica juncea (10 cultivars) and Brassica napus (6 cultivars) were assessed for variability in growth and (137)Cs uptake and accumulation in association with a Bacillus pumilus strain. Field trial was conducted at a contaminated farmland in Nihonmatsu city, in Fukushima prefecture. Inoculation resulted in different responses of the cultivars in terms of growth and radiocesium uptake and accumulation. B. pumilus induced a significant increase in shoot dry weight in 12 cultivars that reached up to 40% in one B. rapa and three B. juncea cultivars. Differences in radiocesium uptake were observed between the cultivars of each Brassica species. Generally, inoculation resulted in a significant increase in (137)Cs uptake in 22 cultivars, while in seven cultivars it was significantly decreased. Regardless of plant cultivar and bacterial inoculation, the transfer of (137)Cs to the plant shoots (TF) varied by a factor of up to 5 and it ranged from to 0.011 to 0.054. Five inoculated cultivars, showed enhanced shoot dry weights and decreased (137)Cs accumulations, among which two B. rapa cultivars named Bitamina and Nozawana had a significantly decreased (137)Cs accumulation in their shoots. Such cultivars could be utilized to minimize the entry of radiocesium into the food chain; however, verifying the consistency of their radiocesium accumulation in other soils is strongly required. Moreover, the variations in growth and radiocesium accumulation, as influenced by Bacillus inoculation, could help selecting well grown inoculated Brassica cultivars with low radiocesium accumulation in their shoots.
Assuntos
Inoculantes Agrícolas , Bacillus pumilus/fisiologia , Brassica napus/microbiologia , Brassica rapa/microbiologia , Radioisótopos de Césio , Mostardeira/microbiologia , Poluentes Radioativos do Solo , Brassica napus/crescimento & desenvolvimento , Brassica napus/metabolismo , Brassica rapa/crescimento & desenvolvimento , Brassica rapa/metabolismo , Radioisótopos de Césio/farmacocinética , Radioisótopos de Césio/farmacologia , Fazendas , Contaminação de Alimentos/prevenção & controle , Acidente Nuclear de Fukushima , Japão , Mostardeira/crescimento & desenvolvimento , Mostardeira/metabolismo , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/metabolismo , Brotos de Planta/microbiologia , Potássio/metabolismo , Rizosfera , Microbiologia do Solo , Poluentes Radioativos do Solo/farmacocinética , Poluentes Radioativos do Solo/farmacologiaRESUMO
The screening of mini-core collection of azuki bean accessions (Vigna angularis (Willd.) Ohwi & Ohashi) for comparative uptake of (137)Cs in their edible portions was done in field trials on land contaminated by the Fukushima Daiichi Nuclear Power Plant (FDNPP) accident. Ninety seven azuki bean accessions including their wild relatives from a Japanese gene bank, were grown in a field in the Fukushima prefecture, which is located approximately 51 km north of FDNPP. The contamination level of the soil was 3665 ± 480 Bq kg(-1) dry weight ((137)Cs, average ± SD). The soil type comprised clay loam, where the sand: silt: clay proportion was 42:21:37. There was a significant varietal difference in the biomass production, radiocaesium accumulation and transfer factor (TF) of radiocaesium from the soil to edible portion. Under identical agricultural practice, the extent of (137)Cs accumulation by seeds differed between the accessions by as much as 10-fold. Inter-varietal variation was expressed at the ratio of the maximum to minimum observed (137)Cs transfer factor for seeds ranged from 0.092 to 0.009. The total biomass, time to flowering and maturity, and seed yield had negative relationship to (137)Cs activity concentration in seeds. The results suggest that certain variety/varieties of azuki bean which accumulated less (137)Cs in edible portion with preferable agronomic traits are suitable to reduce the (137)Cs accumulation in food chain on contaminated land.
Assuntos
Radioisótopos de Césio/metabolismo , Sementes/metabolismo , Poluentes Radioativos do Solo/metabolismo , Vigna/genética , Vigna/metabolismo , Radioisótopos de Césio/análise , Acidente Nuclear de Fukushima , Genótipo , Japão , Poluentes Radioativos do Solo/análise , Especificidade da Espécie , Vigna/crescimento & desenvolvimentoRESUMO
An assessment of within field spatial variations in grain yield and methane (CH4) emission was conducted in lowland rice fields of Myanmar. Two successive rice fields (1(st) field and 2(nd) field) were divided into fertilized and non-fertilized parts and CH4 measurements were conducted at the inlet, middle and outlet positions of each field. The results showed that CH4 emissions at non-fertilized parts were higher than those at fertilized part in both rice fields. The average CH4 emissions ranged from 8.7 to 26.6 mg m(-2) h(-1) in all positions in both rice fields. The spatial variation in CH4 emission among the positions was high in both rice fields with the highest emissions in the outlet of the 1(st) field and the inlet of the 2(nd) field. The CH4 emissions at these two positions showed 2 - 2.5 times higher than those at other positions in both rice fields. Stepwise regression analysis indicates that soil total carbon content is the primary factor for CH4 emission. The average CH4 emissions during rice growing season were 13.5 mg m(-2) h(-1) for the 1(st) field and 15.7 mg m(-2) h(-1) for the 2(nd) field. Spearman rank order correlation analysis showed that CH4 emission was significantly and positively correlated with soil temperature, surface water depth and negatively correlated with soil redox potential. The result indicated that high within field spatial variation in CH4 emissions required different site specific management practices to mitigate CH4 emissions in lowland paddy rice soil.