Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Proc Natl Acad Sci U S A ; 118(35)2021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-34453002

RESUMO

Among the many complex bioactuators functioning at different scales, the organelle cilium represents a fundamental actuating unit in cellular biology. Producing motions at submicrometer scales, dominated by viscous forces, cilia drive a number of crucial bioprocesses in all vertebrate and many invertebrate organisms before and after their birth. Artificially mimicking motile cilia has been a long-standing challenge while inspiring the development of new materials and methods. The use of magnetic materials has been an effective approach for realizing microscopic artificial cilia; however, the physical and magnetic properties of the magnetic material constituents and fabrication processes utilized have almost exclusively only enabled the realization of highly motile artificial cilia with dimensions orders of magnitude larger than their biological counterparts. This has hindered the development and study of model systems and devices with inherent size-dependent aspects, as well as their application at submicrometer scales. In this work, we report a magnetic elastomer preparation process coupled with a tailored molding process for the successful fabrication of artificial cilia with submicrometer dimensions showing unprecedented deflection capabilities, enabling the design of artificial cilia with high motility and at sizes equal to those of their smallest biological counterparts. The reported work crosses the barrier of nanoscale motile cilia fabrication, paving the way for maximum control and manipulation of structures and processes at micro- and nanoscales.


Assuntos
Biomimética/métodos , Cílios/química , Cílios/fisiologia , Fenômenos Magnéticos , Modelos Biológicos , Nanopartículas/química , Fenômenos Biomecânicos , Humanos , Movimento (Física)
2.
Opt Express ; 31(18): 29085-29095, 2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37710715

RESUMO

Over the last decades, three-dimensional micro-manufacturing of fused silica via near-infrared ultrafast laser exposure combined with an etching step has become an established technique for producing complex three-dimensional components. Here, we explore the effect of ultraviolet exposure on process efficiency. Specifically, we demonstrate that shorter wavelengths not only enable enhanced resolution but also yield higher etching selectivity, with an order of magnitude lower pulse energy and significantly higher repetition rates than current practice. This result is obtained using an exposure regime where the laser beam alternates between regimes of self-focusing and defocusing in a stable manner, forming a localized filament. Using this principle, we demonstrate the fabrication of self-organized nano-channels with diameters as small as 120 nm after etching, reaching extreme aspect ratios, exceeding 1500.

3.
Opt Express ; 30(8): 13603-13615, 2022 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-35472970

RESUMO

Chalcogenide glass exhibits a wide transmission window in the infrared range, a high refractive index, and nonlinear optical properties; however, due to its poor mechanical properties and low chemical and environmental stability, producing three-dimensional microstructures of chalcogenide glass remains a challenge. Here, we combine the fabrication of arbitrarily shaped three-dimensional cavities within fused silica molds by means of femtosecond laser-assisted chemical etching with the pressure-assisted infiltration of a chalcogenide glass into the resulting carved silica mold structures. This process enables the fabrication of 3D, geometrically complex, chalcogenide-silica micro-glass composites. The resulting products feature a high refractive index contrast that enables total-internal-reflection guiding and an optical quality roughness level suited for applications in the infrared.

4.
Opt Express ; 29(7): 10853-10862, 2021 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-33820209

RESUMO

Vibration monitoring plays a key role in numerous applications, including machinery predictive maintenance, shock detection, space applications, packaging-integrity monitoring and mining. Here, we investigate mechanical nonlinearities inherently present in suspended glass waveguides as a means for optically retrieving key vibration pattern information. The principle is to use optical phase changes in a coherent light signal travelling through the suspended glass waveguide to measure both optical path elongation and stress build-up caused by a given vibration state. Due to the intrinsic non-linear mechanical properties of double-clamped beams, we show that this information not only offers a means for detecting excessive vibrations but also allows for identifying specific vibration patterns, such as positive or negative chirp, without the need for any additional signal processing. In addition, the manufacturing process based on femtosecond laser exposure and chemical etching makes this sensing principle not only simple, compact and robust to harsh environments but also scalable to a broad frequency range.

5.
Opt Express ; 29(22): 35054-35066, 2021 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-34808949

RESUMO

Advanced three-dimensional manufacturing techniques are triggering new paradigms in the way we design and produce sophisticated parts on demand. Yet, to fully unravel its potential, a few limitations have to be overcome, one of them being the realization of high-aspect-ratio structures of arbitrary shapes at sufficiently high resolution and scalability. Among the most promising advanced manufacturing methods that emerged recently is the use of optical non-linear absorption effects, and in particular, its implementation in 3D printing of glass based on femtosecond laser exposure combined with chemical etching. Here, we optimize both laser and chemical processes to achieve unprecedented aspect ratio levels. We further show how the formation of pre-cursor laser-induced defects in the glass matrix plays a key role in etching selectivity. In particular, we demonstrate that there is an optimal energy dose, an order of magnitude smaller than the currently used ones, yielding to higher process efficiency and lower processing time. This research, in addition to a conspicuous technological advancement, unravels key mechanisms in laser-matter interactions essential in chemically-based glass manufacturing and offers an environmentally-friendly pathway through the use of less-dangerous etchants, replacing the commonly used hydrofluoric acid.

6.
Opt Express ; 26(11): 14024-14037, 2018 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-29877446

RESUMO

Femtosecond laser exposure of fused silica can lead to non-linear absorption, eventually causing structural modifications in the material. Above a given pulse repetition frequency, the effects from one pulse to the next one become cumulative leading to a localized bulk heating of the substrate, and in turn, to the dissociation of the glass matrix leading to gas bubbles formation. Here, we investigate the dynamics of bubbles formation as a function of the incoming net fluence. In particular, we observe evidences of laser trapping of gas bubbles and the unexpected formation of self-organized nanostructures, resembling nanogratings normally found at much lower repetition rate, i.e. when cumulative effects are absent.

7.
Opt Express ; 25(9): 9587-9594, 2017 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-28468341

RESUMO

Raman spectroscopy is the workhorse for label-free analysis of molecules. It relies on the inelastic scattering of incoming monochromatic light impinging molecules of interest. This effect leads to a very weak emission of light spectrum that provides a signature of the molecules being observed. Considerable efforts have been made over the last decades, in particular with the development of Surface Enhanced Raman Spectroscopy (SERS), to enhance the intensity of the emitted signal so that ultimately, traces of molecules can be detected. Here, we show that dense self-organized networks of quasi-monodisperse nanoparticles redepositing during femtosecond laser ablation of trenches in fused silica can lead to a significant field enhancement effect, enabling the Raman detection of a single-molecule layer deposited on the surface (so called monolayer). Unlike previously reported for SERS experiments, here, there is no metal layer promoting plasmonics effects causing localized field enhancement. The method for producing SERS substrates is therefore quite straightforward and low cost.

8.
Opt Express ; 25(21): 26280-26288, 2017 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-29041286

RESUMO

We present a novel hybrid glass-polymer micromechanical sensor by combining two femtosecond laser direct writing processes: laser illumination followed by chemical etching of glass and two-photon polymerization. This incorporation of techniques demonstrates the capability of combining mechanical deformable devices made of silica with an integrated polymer structure for passive chemical sensing application. We demonstrate that such a sensor could be utilized for investigating the elastic properties of polymeric microstructures fabricated via the two-photon polymerization technique. Moreover, we show that polymeric microstructure stiffness increases when immersed in organic liquids.

9.
Chimia (Aarau) ; 71(5): 295-298, 2017 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-28576156

RESUMO

The progress made in ultrafast laser technology towards high repetition rate systems have opened new opportunities in micromanufacturing. Non-linear absorption phenomena triggered by femtosecond pulses interacting with transparent materials allow material properties to be tailored locally and in three dimensions, with resolution beyond the diffraction limits and at rate compatible with fabrication process requirements. In this short article, we illustrate the potential of this technology for manufacturing, and more specifically micro-engineering, with a few examples taken from our own research and beyond.

10.
Opt Express ; 24(24): 27239-27252, 2016 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-27906297

RESUMO

The use of femtosecond lasers to introduce controlled stress states has recently been demonstrated in silica glass. We use this technique, in combination with chemical etching, to generate and control stress-induced birefringence over a well-defined region of interest, demonstrating direct-write wave plates with precisely tailored retardance levels. This tailoring enables the fabrication of laser-written polarization optics that can be tuned to any wavelength for which silica is transparent, and with a clear aperture free of any laser modifications. Using this approach, we achieve sufficient retardance to act as a quarter-wave plate. The stress distribution within the clear aperture is analyzed and modeled, providing a generic template that can be used as a set of design rules for laser-machined polarization devices.

11.
Opt Express ; 23(22): 29258-67, 2015 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-26561195

RESUMO

Optical components like resonator or waveguides often have stringent requirements in term of positioning accuracy during packaging. While this can be done routinely in a laboratory environment, permanently positioning and aligning optical elements with nanometer accuracy in a fully packaged device is a challenging endeavor. Here, we demonstrate the use of femtosecond laser-induced modifications in glass for the remote permanent fine-positioning of an optical element with sub-nanometer resolution.

12.
Opt Express ; 23(1): 86-100, 2015 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-25835656

RESUMO

Femtosecond laser exposure in the non-ablative regime induces a variety of bulk structural modifications, in which anisotropy may depend on the polarization of the writing beam. In this work, we investigate the correlation between polarization state and stress anisotropy. In particular, we introduce a methodology that allows for rapid analysis and visualization of laser-induced stress anisotropy in glasses and crystals. Using radial and azimuthal polarization, we also demonstrate stress states that are nearly isotropic.

13.
Opt Express ; 23(13): 17355-66, 2015 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-26191745

RESUMO

Morphing refers to the smooth transition from a specific shape into another one, in which the initial and final shapes can be significantly different. A typical illustration is to turn a cube into a sphere by continuous change of shape curvatures. Here, we demonstrate a process of laser-induced morphing, driven by surface tension and thermally-controlled viscosity. As a proof-of-concept, we turn 3D glass structures fabricated by a femtosecond laser into other shapes by locally heating up the structure with a feedback-controlled CO2 laser. We further show that this laser morphing process can be accurately modelled and predicted.

14.
Opt Express ; 23(13): 16993-7007, 2015 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-26191709

RESUMO

We report evidence of intermittent behavior between chaotic and self-organized patterns while writing lines with a femtosecond lasers on the surface of a fused silica substrate. The patterns are accompanied by resolidified sub-microspheres and non-aligned grating lamellae. We observe that such dynamic behavior exhibits a striking similarity with the fluctuating content of a queuing system which alternate between random busy and idle periods.

15.
Opt Express ; 23(2): 1428-37, 2015 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-25835901

RESUMO

Surface texturing is demonstrated by the combination of wet etching and ultrafast laser nanostructuring of silica glass. Using potassium hydroxide (KOH) at room temperature as an etchant of laser modified glass, we show the polarization dependent linear increase in retardance reaching a threefold value within 25 hours. The dispersion control of birefringence by the etching procedure led to achromatic behaviour over the entire visible spectral range. The mechanism of enhanced KOH etching selectivity after femtosecond laser exposure is discussed and correlated to the formation of various laser-induced defects, such as silicon-rich oxygen deficiency and color centers.

16.
Opt Lett ; 40(15): 3623-6, 2015 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-26258373

RESUMO

We present direct experimental observation of the morphological evolution during the formation of nanogratings with sub-100-nm periods with the increasing number of pulses. Theoretical simulation shows that the constructive interference of the scattering light from original nanoplanes will create an intensity maximum located between the two adjacent nanoplanes, resulting in shortening the nanograting period by half. The proposed mechanism explains the formation of nanogratings with periods beyond those predicted by the nanoplasmonic model.

17.
Opt Express ; 21(21): 24942-51, 2013 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-24150337

RESUMO

Under certain exposure conditions, femtosecond lasers create nanogratings in the bulk of fused silica for which the orientation is governed by the laser polarization. Such nanostructure induces stress that affects optical and chemical properties of the material. Here, we present a method based on optical retardance measurement to quantify the stress around laser affected zones. Further, we demonstrate stress dependence on the nanogratings orientation and we show that the stress within single nanogratings lamellae can locally be as high as several gigapascals.

18.
Opt Express ; 21(4): 3946-58, 2013 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-23481930

RESUMO

The ability of 8 picosecond pulse lasers for three dimensional direct-writing in the bulk of transparent dielectrics is assessed through a comparative study with a femtosecond laser delivering 600 fs pulses. The comparison addresses two main applications: the fabrication of birefringent optical elements and two-step machining by laser exposure and post-processing by chemical etching. Formation of self-organized nano-gratings in glass by ps-pulses is demonstrated. Differential etching between ps-laser exposed regions and unexposed silica is observed. Despite attaining values of retardance (>100 nm) and etching rate (2 µm/min) similar to fs pulses, ps pulses are found unsuitable for bulk machining in silica glass primarily due to the build-up of a stress field causing scattering, cracks and non-homogeneous etching. Additionally, we show that the so-called "quill-effect", that is the dependence of the laser damage from the direction of writing, occurs also for ps-pulse laser machining. Finally, an opposite dependence of the retardance from the intra-pulse distance is observed for fs- and ps-laser direct writing.


Assuntos
Lasers , Nanoestruturas/química , Nanoestruturas/efeitos da radiação , Refratometria/instrumentação , Dióxido de Silício/química , Dióxido de Silício/efeitos da radiação , Desenho de Equipamento , Análise de Falha de Equipamento , Vidro/química , Vidro/efeitos da radiação , Nanoestruturas/ultraestrutura , Propriedades de Superfície/efeitos da radiação
19.
Adv Mater ; 35(20): e2210446, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36749876

RESUMO

The formation of elemental trigonal tellurium (t-Te) on tellurite glass surfaces exposed to femtosecond laser pulses is discussed. Specifically, the underlying elemental crystallization phenomenon is investigated by altering laser parameters in common tellurite glass compositions under various ambient conditions. Elemental crystallization of t-Te by a single femtosecond laser pulse is unveiled by high-resolution imaging and analysis. The thermal diffusion model reveals the absence of lattice melting upon a single laser pulse, highlighting the complexity of the phase transformation. The typical cross-section displays three different crystal configurations over its depth, in which the overall thickness increases with each subsequent pulse. The effect of various controlled atmospheres shows the suppressing nature of the elemental crystallization, whereas the substrate temperature shows no significant impact on the nucleation of t-Te nanocrystals. This research gives new insight into the elemental crystallization of glass upon femtosecond laser irradiation and shows the potential to fabricate functional transparent electronic micro/nanodevices.

20.
Opt Express ; 19(7): 6807-21, 2011 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-21451708

RESUMO

By continuously scanning a femtosecond laser beam across a fused silica specimen, we demonstrate the formation of self-organized bubbles buried in the material. Rather than using high intensity pulses and high numerical aperture to induce explosions in the material, here bubbles form as a consequence of cumulative energy deposits. We observe a transition between chaotic and self-organized patterns at high scanning rate (above 10 mm/s). Through modeling the energy exchange, we outline the similarities of this phenomenon with other non-linear dynamical systems. Furthermore, we demonstrate with this method the high-speed writing of two- and three- dimensional bubble "crystals" in bulk silica.


Assuntos
Modelos Químicos , Dióxido de Silício/química , Dióxido de Silício/efeitos da radiação , Simulação por Computador , Teste de Materiais , Microbolhas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA