Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
PLoS One ; 14(4): e0215645, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31017976

RESUMO

In peatland restoration we often lack an information whether re-established ecosystems are functionally similar to non-degraded ones. We re-analysed the long-term outcomes of restoration on vegetation and plant functional traits in 38 European fens restored by rewetting (18 sites) and topsoil removal (20 sites). We used traits related to nutrient acquisition strategies, competitiveness, seed traits, and used single- and multi-trait metrics. A separate set of vegetation records from near-natural fens with diverse plant communities was used to generate reference values to aid the comparisons. We found that both restoration methods enhanced the similarity of species composition to non-degraded systems but trait analysis revealed differences between the two approaches. Traits linked to nutrient acquisition strategies indicated that topsoil removal was more effective than rewetting. After topsoil removal competitive species in plant communities had decreased, while stress-tolerant species had increased. A substantial reduction in nutrient availability ruled out the effect of initial disturbance. An ability to survive and grow in anoxic conditions was enhanced after restoration, but the reference values were not achieved. Rewetting was more effective than topsoil removal in restricting variation in traits values permitted in re-developing vegetation. We found no indication of a shift towards reference in seed traits, which suggested that dispersal constraint and colonization deficit can be a widespread phenomena. Two functional diversity indices: functional richness and functional dispersion showed response to restoration and shifted values towards reference mires and away from the degraded systems. We concluded that targeting only one type of environmental stressor does not lead to a recovery of fens, as it provides insufficient level of stress to restore a functional ecosystem. In general, restoration efforts do not ensure the re-establishment and long-term persistence of fens. Restoration efforts result in recovery of fen ecosystems, confirmed with our functional trait analysis, although more rigid actions are needed for restoring fully functional mires, by achieving high and constant levels of anoxia and nutrient stresses.


Assuntos
Conservação dos Recursos Naturais/métodos , Fenômenos Fisiológicos Vegetais , Áreas Alagadas , Biodiversidade , Ecossistema , Europa (Continente) , Desenvolvimento Vegetal , Solo , Estresse Fisiológico
2.
Sci Total Environ ; 402(1): 70-81, 2008 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-18514261

RESUMO

Dutch water policy aims for more frequent, controlled flooding of river valley floodplains to avoid unwanted flooding elsewhere; in anticipation of increased flooding risks resulting from climate changes. Controlled flooding usually takes place in winter in parts of the valleys which had not been subject to flooding in the last decades. It may thus affect existing nature with its conservation values. The goal of this study was to clarify the geochemical and hydrological factors determining plant species composition of winter-flooded river valley grasslands. A correlative study was carried out in 43 sites in 13 Dutch river valley floodplains, with measurements of flooding regime, vegetation composition, soil nutrients and soil pH status. With the use of canonical correspondence analysis (CCA) the plant species composition was investigated in relation to the geochemical variables and the winter winter-flooding regime. We found that the distributions of target species and non-target species were clearly correlated with geochemical characteristics and flooding regime. Clustering of sites within the CCA plots has led us to distinguish between four types of winter flooding in our areas: floodplains with (a) accumulating rain water, (b) low groundwater levels flooded with river water, (c) discharging groundwater and (d) high groundwater levels flooded with river water. Our major conclusions are (1) the winter groundwater level of winter-flooded grasslands was important for evaluating the effects of winter flooding on the geochemistry and plant species composition, and (2) winter winter-flooding effects were largely determined by the nature of the flooding. A high frequency of flooding particularly favoured a small set of common plant species. In areas with groundwater seepage, winter flooding may provide geochemical conditions suitable for diverse vegetation types with rare species. Rainwater flooded sites appeared less suitable for most target species.


Assuntos
Ecossistema , Inundações , Desenvolvimento Vegetal , Microbiologia do Solo , Poluentes do Solo/análise , Geografia , Concentração de Íons de Hidrogênio , Plantas/classificação , Dinâmica Populacional , Estações do Ano , Poluentes do Solo/química , Poluentes do Solo/metabolismo , Especificidade da Espécie , Estatística como Assunto
3.
R Soc Open Sci ; 4(10): 170449, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29134063

RESUMO

Global change, like droughts, can destabilize the carbon sink function of peatlands, either directly or indirectly through changes in plant community composition. While the effects of drought and plant community composition on individual carbon (C) related processes are well understood, their effect on multiple C-related processes simultaneously-multifunctionality-is poorly known. We studied the effect of drought on four C-related processes (net and gross CO2 exchange, methane fluxes, and dissolved organic carbon content) in a plant removal experiment. Plant functional type (PFT) removal (graminoids, herbs, Polytrichum spp., incl. combinations) negatively affected multifunctionality; most markedly when all PFTs were removed. Our results corroborate a negative drought effect on C-related multifunctionality. Drought reduced multifunctionality, and this reduction was again largest when all PFTs were removed. Our data further indicate that much of these negative drought effects were carried over and maintained from the initial removal treatment. These results suggest that while a high diversity in plant functional types is associated to high C-related multifunctionality, plant community assembly does not drive the ability of peatlands to withstand the negative impacts of drought on multifunctionality. Hence, to safeguard the carbon cycling function in intact peatlands, the effects of climate change on the functional composition of the peatland plant community needs to be minimized.

4.
Environ Pollut ; 139(1): 143-56, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-15996804

RESUMO

Riparian zones are known to function as buffers, reducing non-point source pollution from agricultural land to streams. In the Netherlands, riparian zones are subject to high nitrogen inputs. We combined hydrological, chemical and soil profile data with groundwater modelling to evaluate whether chronically N loaded riparian zones were still mitigating diffuse nitrate fluxes. Hydraulic parameters and water quality were monitored over 2 years in 50 piezometres in a forested and grassland riparian zone. Average nitrate loadings were high in the forested zone with 87 g NO(3)(-)-N m(-2) y(-1) and significantly lower in the grassland zone with 15 g NO(3)(-)-N m(-2) y(-1). Groundwater from a second aquifer diluted the nitrate loaded agricultural runoff. Biological N removal however occurred in both riparian zones, the grassland zone removed about 63% of the incoming nitrate load, whereas in the forested zone clear symptoms of saturation were visible and only 38% of the nitrate load was removed.


Assuntos
Nitratos/análise , Rios/química , Poluentes Químicos da Água/análise , Ecossistema , Monitoramento Ambiental/métodos , Fenômenos Geológicos , Geologia , Países Baixos , Nitrogênio/análise , Concentração Osmolar , Poaceae , Chuva , Poluentes do Solo/análise , Árvores , Movimentos da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA