Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Opt Express ; 27(24): 35700-35709, 2019 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-31878737

RESUMO

This paper proposes a distributed collaborative learning approach for cognitive and autonomous multi-domain elastic optical networking (EON). The proposed approach exploits a knowledge-defined networking framework which leverages a broker plane to coordinate the operations of multiple EON domains and applies machine learning (ML) to support autonomous and cognitive inter-domain service provisioning. By employing multiple distributed ML blocks learning domain-level features and working with broker plane aggregation ML blocks (through the chain rule-based training), the proposed approach enables to develop cognitive networking applications that can fully exploit the multi-domain EON states while obviating the need for the raw and confidential intra-domain data. In particular, we investigate end-to-end quality-of-transmission estimation application using the distributed learning approach and propose three estimator designs incorporating the concepts of multi-task learning (MTL) and transfer learning (TL). Evaluations with experimental data demonstrate that the proposed designs can achieve estimation accuracies very close to (with differences less than 0.5%) or even higher than (with MTL/TL) those of the baseline models assuming full domain visibility.

2.
Opt Express ; 27(3): 1929-1940, 2019 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-30732239

RESUMO

This paper reports on large field-of-regard, high-efficiency, and large aperture active optical phased arrays (OPAs) for optical beam steering in LIDAR systems. The fabricated 5 mm-long silicon photonic OPA with a 1.3 µm waveguide pitch achieved adjacent waveguide crosstalk below -12dB. A relatively large and uniform emission aperture has been achieved with a low-contrast silicon nitride assisted grating (~20 dB/cm) whose emission profile can be further optimized using an apodized design. The fabricated silicon-photonic OPA demonstrated > 40° lateral beam steering with no sidelobes in a ± 33° field-of-regard and 3.3° longitudinal beam steering via wavelength tuning by 20 nm centered at 1550 nm. We have fully integrated the silicon photonic OPA device with electronic controls and successfully demonstrated 2-dimensional coherent optical beam steering of pre-planned far-field patterns. Future improvements include placement of a distributed Bragg reflector (DBR) underneath the grating emitter in order to achieve nearly a factor of two improvement in emission efficiency.

3.
Opt Express ; 26(4): 4853-4862, 2018 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-29475330

RESUMO

We propose and implement a hardware-efficient frequency offset estimator (FOE) optimized for 16- and 32-QAM coherent optical receivers with low hardware cost and high estimation accuracy. The proposed FOE combines a wide-range coarse estimator and a narrow-range highly accurate estimator in a feedforward architecture. We numerically and experimentally investigate the performance of the proposed estimator by using a field-programmable-logic-array (FPGA) based real-time coherent receiver. Compared with other state-of-the-art estimators in literature, the proposed method reduces over 40% of hardware utilizations while maintaining the same level of estimation accuracy in terms of mean-squared-error (MSE) and optical signal-to-noise ratio (OSNR) sensitivity. These results enable the development of next generation DSP circuit capable of supporting high capacity coherent optical communication link with advanced modulation formats.

4.
Opt Express ; 25(25): 30895-30904, 2017 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-29245769

RESUMO

This paper proposes and experimentally demonstrates a blind modulation format identification (MFI) method delivering high accuracy (> 99%) even in a low OSNR regime (< 10 dB). By using nonlinear power transformation and peak detection, the proposed MFI can recognize whether the signal modulation format is BPSK, QPSK, 8-PSK or 16-QAM. Experimental results demonstrate that the proposed MFI can achieve a successful identification rate as high as 99% when the incoming signal OSNR is 7 dB. Key parameters, such as FFT length and laser phase noise tolerance of the proposed method, have been characterized.

5.
Opt Express ; 25(8): 8872-8885, 2017 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-28437962

RESUMO

This paper demonstrates rapidly reconfigurable, high-fidelity optical arbitrary waveform generation (OAWG) in a heterogeneous photonic integrated circuit (PIC). The heterogeneous PIC combines advantages of high-speed indium phosphide (InP) modulators and low-loss, high-contrast silicon nitride (Si3N4) arrayed waveguide gratings (AWGs) so that high-fidelity optical waveform syntheses with rapid waveform updates are possible. The generated optical waveforms spanned a 160 GHz spectral bandwidth starting from an optical frequency comb consisting of eight comb lines separated by 20 GHz channel spacing. The Error Vector Magnitude (EVM) values of the generated waveforms were approximately 16.4%. The OAWG module can rapidly and arbitrarily reconfigure waveforms upon every pulse arriving at 2 ns repetition time. The result of this work indicates the feasibility of truly dynamic optical arbitrary waveform generation where the reconfiguration rate or the modulator bandwidth must exceed the channel spacing of the AWG and the optical frequency comb.

6.
Opt Express ; 25(9): 9521-9527, 2017 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-28468334

RESUMO

We demonstrate hybrid integration of modified uni-traveling carrier photodiodes on a multi-layer silicon nitride platform using total reflection mirrors etched by focused ion beam. The hybrid photodetectors show external responsivity of 0.15 A/W and bandwidth of 3.5 GHz for devices with a diameter of 80 µm. The insertion loss of the waveguide is 3 dB and the coupling efficiency of the total reflection mirror is -3 dB. The highest RF output power is -0.5 dBm measured at 3 GHz with 9 mA photocurrent and -9 V bias.

7.
J Appl Phys ; 130(7): 070907, 2021 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-34483360

RESUMO

Progress in computing architectures is approaching a paradigm shift: traditional computing based on digital complementary metal-oxide semiconductor technology is nearing physical limits in terms of miniaturization, speed, and, especially, power consumption. Consequently, alternative approaches are under investigation. One of the most promising is based on a "brain-like" or neuromorphic computation scheme. Another approach is quantum computing using photons. Both of these approaches can be realized using silicon photonics, and at the heart of both technologies is an efficient, ultra-low power broad band optical modulator. As silicon modulators suffer from relatively high power consumption, materials other than silicon itself have to be considered for the modulator. In this Perspective, we present our view on such materials. We focus on oxides showing a strong linear electro-optic effect that can also be integrated with Si, thus capitalizing on new materials to enable the devices and circuit architectures that exploit shifting computational machine learning paradigms, while leveraging current manufacturing infrastructure. This is expected to result in a new generation of computers that consume less power and possess a larger bandwidth.

8.
Opt Express ; 18(22): 23079-87, 2010 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-21164649

RESUMO

We demonstrate a 120 GHz 3-dB bandwidth on-chip silicon photonic interleaver with a flat passband over a broad spectral range of 70 nm. The structure of the interleaver is based on an asymmetric Mach-Zehnder interferometer (MZI) with 3 ring resonators coupled to the arms of the MZI. The transmission spectra of this device depict a rapid roll-off on the band edges, where the 20-dB bandwidth is measured to be 142 GHz. This device is optimized for operation in the C-band with a channel crosstalk as low as -20 dB. The device also has full reconfiguration capability to compensate for fabrication imperfections.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA